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1.  Abstract 

Pneumonia is the single largest infectious cause of death in children worldwide, 

accounting for 15% of all deaths of children under 5 years old. Regarding the current pandemic, 

chest X-ray (CXR) analysis is needed to rectify false negatives from RT-PCR in COVID 

diagnosis, emphasizing the need to improve diagnostic accuracy. As CXRs are the principal 

diagnostic tool for pneumonia, automating medical image analysis with medical image 

classification can aid radiologists in expediting and improving the diagnostic process. Research 

in deep learning for medical image analysis has utilized individual transfer learning neural 

networks as well as neural network ensembles constructed by means such as bootstrap 

aggregation and soft-voting. This study presents a novel stacked model for CXR analysis 

composed of three CNN architectures: InceptionResNetV2, Xception, and ResNet50. All three 

pre-trained models were trained on a chest X-ray dataset for binary classification and multi-class 

classification and ensembled via stacked generalization into a neural network meta-learner. The 

proposed stacked model (Pneumostack) achieved an accuracy of 95.4% in three-category 

classification (COVID-19, non-COVID pneumonia, and normal) and 99.8% in binary 

classification (normal and pneumonia), outperforming any one of its single constituent classifiers 

and other models presented in current literature. Surpassing existing transfer learning models and 

ensembles, Pneumostack opens doors to higher performance in automated CXR analysis and 

other CNN applications in medicine.  

 

2.  Introduction 

Pneumonia is a lung infection that causes the alveoli of the lungs to fill with pus, causing 

symptoms such as coughing, difficulty breathing, and fever [2]. It can be caused by bacteria, 

 



Streptococcus pneumoniae​ being the most common, and viruses, including SARS-CoV-2 [2]. 

Complications of pneumonia, if the disease is left untreated, include acute respiratory distress 

(ARDS), respiratory failure, necrotizing pneumonia, pleural disorders, organ damage, and sepsis 

[2]. Chest X-rays (CXRs) are the principal diagnostic tool, or the “gold standard”, for pneumonia 

diagnosis [1]. Lobar and lobular consolidation are characteristic of bacterial pneumonia, while 

interstitial opacities are characteristic of viral pneumonia [3]. Automated diagnosis methods can 

extract these characteristic features, minimizing false predictions from human intervention.  In 

the event that trained radiologists are limited, automated diagnosis can reduce child mortality 

rates in regions where pneumonia is most prevalent - South Asia and sub-Saharan Africa [1]. 

COVID-19 As Chest X-rays (CXR) are the principal diagnostic tool for pneumonia [2], 

automating medical image analysis with medical image classification can aid radiologists in 

expediting and improving the diagnostic process in time and accuracy. 

Coronavirus disease (COVID-19) is an infectious disease that causes mild to moderate 

respiratory illness [28]. In rare cases, COVID-19 can lead to severe respiratory problems, kidney 

failure, or death [28]. Currently, the principal diagnostic method is the reverse-transcription 

polymerase chain reaction (RT-PCR) laboratory test that detects RNA specific to the 

SARS-CoV-2 virus with the nasopharyngeal or oropharyngeal swab [29]. Additionally, patterns 

of COVID-19 can be identified on CXRs. Reported typical radiological findings include 

multifocal and bilateral ground glass opacities and consolidations with peripheral and basal 

predominance [30]. Unique features of COVID-19 pneumonia are peripheral air space opacities 

and bilateral lower lobe consolidations with lower-lung distribution [31]. Recent reports have 

revealed that RT-PCR has a sensitivity as low as 60%-71% for detecting COVID-19, while 

CXRs have a sensitivity of 69% [4], presenting the possibility for CXR analysis rectifying false 

 



negative findings in RT-PCR in COVID-19 diagnosis and the need to improve CXR analysis 

accuracy. 

2.1.  Relevant Work 

CNNs have been at the forefront of automated CXR analysis research in effort to detect 

pneumonia and COVID-19. Wang et al. [16] constructed COVID-Net, a tailored CNN for the 

detection of COVID-19 with a projection-expansion-projection-extension (PEPX) design pattern. 

With three classes (non-COVID pneumonia, COVID-19, normal), the model achieved an 

accuracy of 93.3%. Apostolopoulos et al. [17] used VGG-19 as a base model for three classes 

and achieved an accuracy of 87%. Umer et al. [18] proposed COVINet, a CNN approach with 

three convolutional layers, a max pooling layer, an average pooling layer, and four FC layers. 

COVINet achieved an accuracy of 89.9% with three classes. Nishio et. al. [19] used VGG-16 for 

the detection of three classes and achieved an accuracy of 83.68% with a combination of data 

augmentation methods - conventional and mixup. For binary classification, many approaches 

were proposed, such as the MADE-based CNN [20] with 92.55% accuracy, Deep CNN [23] with 

93% accuracy, and a weighted voting ensemble [33] with a 72.26% accuracy. 

 

2.2. Aim 

In contrast to other ensembling methods and the use of individual transfer learning 

models, the aim of this study is to present a stacked convolutional neural network meta-learner of 

transfer learning CNNs with stacked generalization in effort to achieve higher performance than 

any one of its constituent classifiers and existing individual models in binary and multiclass 

pneumonia CXR classification.  

 

 



2.3.  Convolutional Neural Networks 

Convolutional neural networks (CNNs), a deep learning algorithm, has shown 

unsurpassed success in varying image classification tasks due to their capabilities of automated 

unsupervised feature extraction and dimensionality reduction, making it suitable for CXR 

analysis [3]. A CNN consists of an input layer, hidden convolutional layers, ReLU layers, 

pooling layers, fully-connected (FC) layers, and an output layer. The convolutional layer applies 

a convolution operation to the input from a subarea of the previous layer, passing the generated 

feature map on to the next layer. The ReLU layer then applies an activation function on the 

passed feature map to increase non-linearity in the network, removing negative values from the 

map by setting them to zero. Pooling downsamples the detection of feature maps and decreases 

training time. Finally, the FC layers drive the final classification predictions by taking the output 

of the hidden layers and giving the final probabilities for each label [3]. A CNN requires less 

data preprocessing and reaches better results than other classification algorithms due to its 

capability of capturing spatial and temporal dependencies in an image [3]. Moreover, CNNs 

convolve learned features with input data through 2D convolutional layers to extract high-level 

features, making this network ideal for processing 2D images, such as CXRs.  

 



Figure 1.​ Sample CNN Architecture 

 

2.4.  Transfer Learning 

Transfer learning is a machine learning method where a model developed for a 

task is reused as a starting point for another task [6]. In the application for image classification, 

transfer learning models are sourced from base models pre-trained on the ImageNet 1000-class 

classification competition with over 1,000,000 images [6]. With transfer learning, one can 

achieve higher accuracy with a small dataset as the pre-trained weights can already recognize 

generic image features in earlier layers, eliminating the need to train a network from scratch with 

suboptimal weights. The source model is fine-tuned with the train-freezing of later layers that are 

more dataset-specific and then trained on the dataset. The main benefits of transfer learning 

include a higher y-intercept, slope, and asymptote in performance [8]. 

 



 

Figure 2.​ ​The benefits of transfer learning​ [8] 

 

2.4.1.  Xception 

Xception is a convolutional neural network architecture composed of a linear stack of 

depthwise separable convolution layers with residual connections [10]. The architecture has 36 

convolutional layers forming the feature extraction base which are structured into 14 models 

with outlined linear residual connections [10]. This model outperformed VGGNet, ResNet, and 

InceptionV3 in ImageNet with 94.5% [15]. 

 



 

Figure 3.​ ​Xception Architecture​ [10] 

 

2.4.2.  InceptionResNetV2 

Similarly, InceptionResNetV2 combines the Inception architecture with residual 

connections that replaces the filter concatenation stage of Inception. Each Inception block is 

followed by a filter expansion layer that scales up the dimensionality of the filters. 

Inception-ResNetV2 also has batch-normalization only on top of the traditional Inception layers, 

but not on top of the summations to increase the overall number of Inception blocks [14]. This 

model outperformed InceptionV3 and ResNet152 on ImageNet with a 94.6% performance. 

 

 

 

 



Figure 4. ​Compressed View of InceptionResNetV2 Architecture​ [14] 

 

2.4.3.  ResNet50 

The ResNet50 architecture introduces the concept of skip-wise connections, which allows 

the training of extremely deep neural networks with 50+ layers successfully without degradation 

[13]. Previously, this was impossible due to the vanishing gradient problem that persists as more 

layers are added to a neural network, abruptly degrading performance [13]. The model has 48 

convolution layers along with a max pooling layer and an average pooling layer [13]. ResNet50 

was the winner of ImageNet 2015 with a 93% accuracy [15]. 

 

 

 

 

 

 

 



Figure 5. ​ResNet50 Architecture ​[13] 

 

2.5.  Ensemble learning  

Ensemble learning is a method used to maximize detection performance by combining 

the results of single constituent algorithms [4]. The purpose of ensemble learning is to harness 

the capabilities of a range of well-performing models on a classification task and manipulate the 

predictions of the models to construct an ensemble that outperforms any single model in the 

ensemble [9]. One frequently used ensemble method is bootstrap aggregating, which involves the 

creation of random samples of training data with replacement [32]. A model is then built for each 

 



sample, and the results of the multiple models are combined with average or majority voting 

[32]. Another method is boosting - an iterative technique that adjusts the weight of an 

observation considering the preceding classification - which decreases bias error [32]. However, 

a drawback of this method is that it tends to overfit the training data [32]. Furthermore, stacked 

generalization is an ensembling method that involves constructing a meta-model that trains on 

the predictions made by its base models on out-of-sample data [9]. The base models (Level-0 

models) fit on the training data, and the predictions are compiled. The meta-model (Level-1 

model) then learns how to best combine the predictions of the base models [9]. To reap the 

benefits of different CNN architectures, stacked generalization was the ensembling method of 

choice for this study. 

 

3.  Methods 

3.1.  Dataset 

In this work, the Cohen et. al COVID-19 Image Data Collection [11] dataset was 

modified and used. The 5829-image dataset comprises of a collection of COVID-19 (461), 

non-COVID-19 viral pneumonia (1414), bacterial pneumonia (2521), and normal (1433) X-rays 

collected at the Guangzhou Women and Children’s Medical Center. The dataset also contains 

X-ray images of the fungal ​Pneumocystis ​pneumonia and lipoid pneumonia, but these images 

were removed for this study as they are not caused by viral or bacterial strains. 

.  

 

 

 

 



Table 1. ​Number of images by label in dataset 

Figure 6 shows samples of a normal, viral pneumonia, bacterial pneumonia, and 

COVID-19 scan. The scans are as follows: (A) Normal scan, (B) Viral pneumonia, (C) Bacterial 

pneumonia, (D) COVID-19 pneumonia. 

Figure 6. ​Data samples 

 

3.2.  Data Augmentation 

Augmentation can aid in the transform invariant approach of feature-learning in CNNs 

with the inclusion of invariant transformations [34]. The dataset was augmented with four 

transformations: horizontal flip, rotation, vertical shift, and horizontal shift. The images were 

 



horizontally shifted by 10%, vertically shifted by 10%, rotated by 15 degrees clockwise, and 

flipped along the horizontal axis. Figure 3 shows nine images with the applied transformations 

specified above at random. 

Figure 7. ​Nine images with randomly applied data augmentation techniques 

 

3.3.  Implementation of Transfer Learning 

Xception, InceptionResNetV2, and ResNet50 were constructed and pre-trained weights 

were loaded from ImageNet. The first 10 layers were frozen. After the convolution layers of the 

 



source model, a global max pooling layer, three dropout layers, and three FC Dense layers were 

added. Rectified linear unit was used as the activation function for the first FC layer. In binary 

classification, the activation function of the last FC layer was sigmoid. In three-category 

classification, softmax was used in place of sigmoid. All models were compiled with Adam 

optimization. Binary and categorical cross-entropy were used to calculate loss for binary and 

three-class classification, respectively, as defined below: 

Figure 8. ​Binary cross-entropy 

Where: 

● C​1​ and C​2​ are the two classes (pneumonia vs. normal) 

● t​1​ [0,1] and s​1​ are the ground truth and the score for C​1 

● t​2​ = 1 - t1 and s​2​ = 1 - s​2​; they are the groundtruth and the score for C​2 

Figure 9. ​Categorical cross-entropy 

Where: 

● C is the number of classes 

● s​p​ is the predicted score for the positive class 

In training, callbacks such as ModelCheckpoint, EarlyStopping, and ReduceLROnPlateau 

were used to prevent the model from overfitting on training data. 

 



3.4.  Stacked Model 

All layers in each of the ensemble’s individual models were frozen. A dataset with the 

predictions of Xception, InceptionResNetV2, and ResNet50 was constructed after the training of 

individual models. A sequential CNN architecture was used to construct the stacked model with 

a Flatten layer that takes 3 inputs for binary classification and 9 inputs for three-category 

classification, a FC Dense layer with ReLU activation, and a FC Dense layer with sigmoid 

(binary)/softmax (three-category) activation. The model was compiled with Adam optimization 

and either binary or categorical cross entropy.  

Figure 10.​ ​Schematic diagram of proposed model 

 

 



3.5.  Performance Metrics 

To avoid the accuracy paradox in binary classification, multiple performance metrics 

besides accuracy were used to evaluate the individual models and the stacked model. The 

performance metrics used for binary classification are the Sørensen–Dice coefficient, AUC and 

accuracy for binary classification. Accuracy, precision, and recall were used for three-category 

classification.  

The Sørensen–Dice coefficient (F​1​ score) is the weighted average of precision and recall 

and is a popular metric for binary classification. The highest value is 1.0, indicating perfect 

precision and recall, and the lowest possible value is 0. AUC [0,1] represents the degree of 

separability and measures the model’s capability of distinguishing between classes by computing 

the area under the receiver-operating characteristic (ROC) curve. Precision quantifies the number 

of true positive class predictions, while recall is the percentage of true predictions classified. 

Accuracy is the fraction of correct predictions over the total number of predictions. 

Figure 11. ​Definition of Performance Metrics 

Where: 

● T​p​ = number of true positives 

 



● T​n​ = number of true negatives 

● F​p​ = number of false positives 

● F​n​ = number of false negatives 

 

3.6.  Operating System 

Deep learning models were constructed, trained, and evaluated on Google Colaboratory 

with ​1xTesla K80 GPU, 2496 CUDA cores, 12GB GDDR5 VRAM, 2vCPU @2.3Ghz, 12.6 GB 

RAM, and 64 GB disk space. 

4.  Results 

4.1. Binary Classification Results 

Table 2. ​Binary classification results 

The stacked model outperformed all constituent classifiers - Xception, 

InceptionResNetV2, and ResNet50 in binary classification with an accuracy 0.998 and a 

Sørensen–Dice coefficient of 0.988. 

  

 



Figure 12.​ ​Stacked model​ ​binary classification unnormalized confusion matrix  

 

Figure 13. ​Stacked model binary classification Precision-Recall and ROC Curves 

 

 

 

  

 



4.2.  Three-Category Classification Results  

Table 3.​ ​Stacked model three-category classification results 

 

The stacked model outperformed all constituent classifiers - Xception, 

InceptionResNetV2, and ResNet50 in three-category classification with an accuracy of 0.954. 

Figure 14.​ ​Three-category unnormalized confusion matrix 

  

 



5.   Conclusion 

The stacked model performed significantly better than its constituent models (Xception, 

InceptionResNetV2, and ResNet50), as well as existing models used for pneumonia 

binary/multiclass classification. 

Table 4.​  ​Comparison of PneumoStack to models in other studies 

The results of this study indicate that an ensemble Xception, InceptionResNetV2, and 

ResNet50 constructed via stacked generalization has the potential to outperform existing 

methods used for automated pneumonia/COVID-19 diagnosis. Limitations of this study include 

developing and validating the proposed model on a public dataset. CXR characteristics from 

 



these public datasets may differ from those found in clinical data. Future steps include 

investigating PneumoStack performance on clinical CXRs to validate usability in a clinical 

setting. To counter class imbalance in the dataset, the data augmentation may be redone with 

synthetic minority oversampling technique (SMOTE). To investigate if this superior 

performance projects onto other applied CNN tasks in medicine, Pneumostack may be used in 

other medical imaging tasks such as MRI analysis for the early detection of neurodegenerative 

disease, differential gene analysis, and biomarker identification. Ultimately, Pneumostack opens 

the doors to higher CXR analysis performance in automated pneumonia and COVID-19 

diagnosis, potentially paving the way for higher performance in various applied computer vision 

tasks in medicine. 

6.  Code 

6.1. Data Preprocessing for Individual Transfer Learning Models  

#Importation of libraries 
import​ cv2 
import​ glob 
import​ h5py 
import​ shutil 
import​ keras 
import​ imgaug ​as​ aug 
import​ numpy ​as​ np 
import​ pandas ​as​ pd 
import​ seaborn ​as​ sns 
import​ matplotlib.pyplot ​as​ plt 
import​ matplotlib.image ​as​ mimg 
import​ imgaug.augmenters ​as​ augment 
import​ tensorflow ​as​ tf 
from​ os ​import​ listdir, makedirs, getcwd, remove 
from​ os.path ​import​ isfile, join, abspath, exists, isdir, expanduser 
from​ PIL ​import​ Image 
from​ pathlib ​import​ Path 
 

 



from​ skimage.io ​import​ imread 
from​ skimage.transform ​import​ resize 
 

from​ keras.models ​import​ Sequential, Model 
from​ keras.applications.xception ​import​ Xception 
from​ keras.applications.resnet50 ​import​ ResNet50 
from​ keras.applications.vgg16 ​import​ VGG16, preprocess_input 
from​ keras.preprocessing.image ​import​ ImageDataGenerator,load_img, 
img_to_array 

from​ keras.preprocessing ​import​ image 
from​ keras.models ​import​ Sequential 
from​ keras.layers ​import​ Conv2D, MaxPooling2D, Dense, Dropout, Input, 
Flatten, SeparableConv2D,GlobalAveragePooling2D 

from​ keras.layers ​import​ GlobalMaxPooling2D 
from​ keras.layers.normalization ​import​ BatchNormalization 
from​ keras.layers.merge ​import​ Concatenate 
from​ keras.models ​import​ Model 
from​ keras ​import​ backend ​as​ K 
from​ keras.optimizers ​import​ Adam, SGD, RMSprop 
from​ keras.utils.vis_utils ​import​ plot_model 
from​ keras.callbacks ​import​ ModelCheckpoint, Callback, 
EarlyStopping,EarlyStopping,TensorBoard,ReduceLROnPlateau,CSVLogger,Learni

ngRateScheduler 

from​ keras.utils ​import​ to_categorical 
 

from​ sklearn.model_selection ​import​ train_test_split 
from​ sklearn.preprocessing ​import​ StandardScaler 
from​ mlxtend.plotting ​import​ plot_confusion_matrix 
from​ sklearn.metrics ​import​ confusion_matrix 
color = sns.color_palette() 

%matplotlib ​inline 

 

from​ google.colab ​import​ drive 
drive.mount(​'/content/drive'​) 

 

def​ ​normal_nonnormal​(​x​): 
   ​if​ x == ​'Normal'​: 
       ​return​ x 

 



   ​else​: 
       ​return​ ​'Non-Normal' 
df = pd.read_csv(​'/content/drive/My Drive/CombinedImages.zip (Unzipped 
Files)/CombinedImages/CombinedUpdated.csv'​) 
 

na_fill = {​'VirusCategory1'​: ​'Normal'​} 
df = df.fillna(value = na_fill) ​#switch na to normal (dataset error) 
 

df.VirusCategory1 = df.VirusCategory1.​map​(normal_nonnormal) 
df = df.join(pd.get_dummies(df.VirusCategory1.values, prefix = ​'type'​)) 
#one hot 

df = df[[​'ImagePath'​, ​'VirusCategory1'​, ​'type_Non-Normal'​]] ​#only columns 
needed 

X = df[[​'ImagePath'​, ​'VirusCategory1'​]] 
y = df[[​'type_Non-Normal'​]] 
train, test = train_test_split(df) 

x_train, x_test, y_train, y_test = train_test_split(X,y, random_state = 

10​, stratify = X.VirusCategory1.values, 
                                                  train_size = ​.90​) 

 

print​(x_train.VirusCategory1.value_counts()) 
x_train = x_train.drop(​'VirusCategory1'​, axis = ​1​) 
x_test = x_test.drop(​'VirusCategory1'​, axis = ​1​) 
 

def​ ​get_image_value​(​path​): 
   ​#This function will retrieve the RGB array for an image given its path 
   img = image.load_img(path, target_size = (​71​, ​71​,​3​)) 
   img = image.img_to_array(img) 

  

   ​return​ img/​255 
 

 

def​ ​get_data​(​df​): 
   ​#This function will retrieve the paths for each item within a sample, 
and call get_image_value to retrieve the RGB array for each image 

   ​from​ tqdm ​import​ tqdm 
   img_list = [] 

   ​for​ path ​in​ tqdm(df.ImagePath.values, desc = ​'Gathering Image Arrays'​): 

 



       path = ​f​'/content/drive/My Drive/CombinedImages.zip (Unzipped 
Files)/CombinedImages/all/​{path}​' 
       img_list.append(get_image_value(path)) 

   ​return​ np.array(img_list).squeeze() 
x_test = get_data(x_test) 

x_train = get_data(x_train) 

 

augmentation =ImageDataGenerator(rotation_range = ​15​, width_shift_range = 
.1​, height_shift_range = ​.1​, 
                                                          horizontal_flip 

= ​True​, fill_mode = ​'nearest'​) ​#augmentation 
augmentation.fit(x_train) 

 

6.2.  Xception Construction and Training 

def​ ​get_Xception​(): 
  base_model = tf.keras.applications.Xception( 

   include_top=​False​, 
   weights=​"imagenet"​, 
   input_tensor=​None​, 
   input_shape= (​225,225​, ​3​), 
   pooling=​None​, 
   classes=​1000​, 
   classifier_activation=​"softmax"​, 
) 

 

 

 ​for​ layer ​in​ base_model.layers[:​-12​]: 
   layer.trainable = ​False 
  

 ​for​ layer ​in​ base_model.layers: 
   ​print​(layer,layer.trainable) 
 

 model = Sequential() 

 model.add(base_model) 

 model.add(GlobalMaxPooling2D()) 

 model.add(Dense(​1024​,activation=​'relu'​)) 
 model.add(Dropout(​0.5​)) 
 model.add(Dense(​512​,activation=​'relu'​)) 
 model.add(Dropout(​0.5​)) 

 



 model.add(Dense(​1​,activation=​'sigmoid'​))​#softmax for three-category, 3 
inputs 

 model.summary() 

 

 plot_model(model, to_file=​'model_architecture.png'​, show_shapes=​True​, 
show_layer_names=​True​) 
  opt = SGD(lr=​1e-4​,momentum=​0.95​) 
 opt1 = Adam(lr=​1e-4​) 
 

 

 model.​compile​( 
   loss=​'binary_crossentropy'​,​#categorical_crossentropy for three-class 
   optimizer=opt1, 

   metrics=[​'accuracy'​] 
 ) 

 

 ​return​ model 

 

from​ tensorflow.keras.callbacks ​import​ ModelCheckpoint, EarlyStopping, 
ReduceLROnPlateau 

 

early_stopping = EarlyStopping(monitor=​'val_loss'​, verbose = ​1​, 
patience=​5​, min_delta = ​.002​) ​#prevents overfitting 
model_checkpoint = ModelCheckpoint(​'xception.h5'​, verbose = ​1​, 
save_best_only=​True​, 
                                 monitor = ​'val_loss'​, min_delta = ​.002​) 
#saves weight as val loss decreases 

  

lr_plat = ReduceLROnPlateau(patience = ​3​, mode = ​'min'​) ​#adjusts learning 
rate if loss plateaus 

epochs = ​50 
batch_size = ​32 
normal_model = get_Xception_normal() 

normal_history = normal_model.fit(augmentation.flow(x_train, y_train, 

batch_size = batch_size), 

               epochs = epochs, 

        callbacks = [early_stopping, model_checkpoint, lr_plat], 

validation_data = (x_test, y_test), verbose= ​1​) ​#training 

 



6.3.   InceptionResNetV2 Construction and Training 

def​ ​get_InceptionResNetV2_normal​(): 
 

 base_model = tf.keras.applications.InceptionResNetV2(include_top=​False​, 
                 input_shape = (​225​,​225​,​3​), 
                 weights = ​'imagenet'​) 
 

 ​for​ layer ​in​ base_model.layers[:​-12​]: 
   layer.trainable = ​False 
  

 ​for​ layer ​in​ base_model.layers: 
   ​print​(layer,layer.trainable) 
 

 model = Sequential() 

 model.add(base_model) 

 model.add(GlobalAveragePooling2D()) 

 model.add(Dense(​1024​,activation=​'relu'​)) 
 model.add(Dropout(​0.5​)) 
 model.add(Dense(​512​,activation=​'relu'​)) 
 model.add(Dropout(​0.5​)) 
 model.add(Dense(​1​,activation=​'sigmoid'​)) ​#softmax for three-category, 3 
inputs 

 model.summary() 

 

 plot_model(model, to_file=​'model_architecture.png'​, show_shapes=​True​, 
show_layer_names=​True​) 
  opt = SGD(lr=​1e-4​,momentum=​0.95​) 
 opt1 = Adam(lr=​1e-4​) 
 

 

 model.​compile​( 
   loss=​'binary_crossentropy'​,​#categorical_crossentropy for three-class 
 

   optimizer=opt1, 

   metrics=[​'accuracy'​] 
 ) 

 

 ​return​ model 
 

 



model_checkpoint = ModelCheckpoint(​'InceptionResNetV2.h5'​, verbose = ​1​, 
save_best_only=​True​, 
                                 monitor = ​'val_loss'​, min_delta = ​.002​) 
#saves weight as val loss decreases 

  

lr_plat = ReduceLROnPlateau(patience = ​3​, mode = ​'min'​) ​#adjusts learning 
rate if loss plateaus 

epochs = ​50 
batch_size = ​32 
normal_model = get_InceptionResNetV2_normal() 

normal_history = normal_model.fit(augmentation.flow(x_train, y_train, 

batch_size = batch_size), 

               epochs = epochs, 

        callbacks = [early_stopping, model_checkpoint, lr_plat], 

validation_data = (x_test, y_test), verbose= ​1​) 

 

6.4.  ResNet50 Construction and Training 

def​ ​get_ResNet50_normal​(): 
 

 base_model = applications.resnet50.ResNet50(weights= ​'imagenet'​, 
include_top=​False​, input_shape= (​75​,​75​,​3​)) 
 

 ​for​ layer ​in​ base_model.layers[:​-12​]: 
   layer.trainable = ​False 
  

 ​for​ layer ​in​ base_model.layers: 
   ​print​(layer,layer.trainable) 
 

 model = Sequential() 

 model.add(base_model) 

 model.add(GlobalAveragePooling2D()) 

 model.add(Dense(​1024​,activation=​'relu'​)) 
 model.add(Dropout(​0.5​)) 
 model.add(Dense(​512​,activation=​'relu'​)) 
 model.add(Dropout(​0.5​)) 
 model.add(Dense(​1​,activation=​'sigmoid'​))​#softmax for three-category, 3 
inputs 

 

 



 model.summary() 

 

 plot_model(model, to_file=​'model_architecture.png'​, show_shapes=​True​, 
show_layer_names=​True​) 
  opt = SGD(lr=​1e-4​,momentum=​0.95​) 
 opt1 = Adam(lr=​1e-4​) 
 

 

 model.​compile​( 
   loss=​'binary_crossentropy'​,​#categorical_crossentropy for three-class 
 

   optimizer=opt1, 

   metrics=[​'accuracy'​] 
 ) 

 

 ​return​ model 

 

model_checkpoint = ModelCheckpoint(​'resnet50.h5'​, verbose = ​1​, 
save_best_only=​True​, 
                                 monitor = ​'val_loss'​, min_delta = ​.002​) 
#saves weight as val loss decreases 

  

lr_plat = ReduceLROnPlateau(patience = ​3​, mode = ​'min'​) ​#adjusts learning 
rate if loss plateaus 

epochs = ​50 
batch_size = ​32 
normal_model = get_ResNet50_normal() 

normal_history = normal_model.fit(augmentation.flow(x_train, y_train, 

batch_size = batch_size), 

               epochs = epochs, 

        callbacks = [early_stopping, model_checkpoint, lr_plat], 

validation_data = (x_test, y_test), verbose= ​1​) 

 

6.5.  Data Preprocessing for Stacked Model (Binary) 

def​ ​normal_nonnormal​(​x​): 
   ​if​ x == ​'Normal'​: 
       ​return​ x 
   ​else​: 

 



       ​return​ ​'Non-Normal' 
df = pd.read_csv(​'/content/drive/My Drive/CombinedImages.zip (Unzipped 
Files)/CombinedImages/CombinedUpdated.csv'​) 
#df = pd.read_csv('../CombinedImages/CombinedUpdated.csv') 

na_fill = {​'VirusCategory1'​: ​'Normal'​} 
df = df.fillna(value = na_fill) ​#switch na to normal (dataset error) 
 

df.VirusCategory1 = df.VirusCategory1.​map​(normal_nonnormal) 
df = df.join(pd.get_dummies(df.VirusCategory1.values, prefix = ​'type'​)) 
#one hot 

df = df[[​'ImagePath'​, ​'VirusCategory1'​, ​'type_Non-Normal'​]] ​#only columns 
needed 

X = df[[​'ImagePath'​, ​'VirusCategory1'​]] 
y = df[[​'type_Non-Normal'​]] 
 

x_train, x_test, y_train, y_test = train_test_split(X,y, random_state = 

10​, stratify = X.VirusCategory1.values, 
                                                  train_size = ​.80​) 

 

print​(x_train.VirusCategory1.value_counts()) 
x_train = x_train.drop(​'VirusCategory1'​, axis = ​1​) ​#only using this 
category to stratify 

x_test = x_test.drop(​'VirusCategory1'​, axis = ​1​) 
 

def​ ​get_image_value​(​path​): 
   ​'''This function will retrive the RGB array for an image given its 
path''' 

   img = image.load_img(path, target_size = (​225​,​225​,​3​)) 
   img = image.img_to_array(img) 

  

   ​return​ img/​255 
 

 

def​ ​get_data​(​df​): 
   ​'''This function will retrive the paths for each item within a sample, 
and call get_image_value to retrieve 

   the RGB array for each image''' 

   ​from​ tqdm ​import​ tqdm 
   img_list = [] 

 



   ​for​ path ​in​ tqdm(df.ImagePath.values, desc = ​'Gathering Image Arrays'​): 
       path = ​f​'/content/drive/My Drive/CombinedImages.zip (Unzipped 
Files)/CombinedImages/all/​{path}​' 
       img_list.append(get_image_value(path)) 

   ​return​ np.array(img_list).squeeze() 
x_test = get_data(x_test) 

x_train = get_data(x_train) 

 

 
from​ tensorflow.keras.callbacks ​import​ ModelCheckpoint, EarlyStopping, 
ReduceLROnPlateau 

from​ keras.preprocessing.image ​import​ ImageDataGenerator 
augmentation =ImageDataGenerator(rotation_range = ​15​, width_shift_range = 
.1​, height_shift_range = ​.1​, 
                                                          horizontal_flip 

= ​True​, fill_mode = ​'nearest'​) ​#augmentation 
augmentation.fit(x_train) 

 

import​ keras 
from​ keras.models ​import​ load_model 
 

def​ ​load_all_models​(​n_models​): 
 all_models = list() 

 ​for​ i ​in​ ​range​(n_models): 
   ​# define filename for this ensemble 
   filename = ​'models/model_'​ + str(i + ​1​) + ​'.h5' 
   ​# load model from file 
   model = load_model(filename) 

   ​# add to list of members 
   all_models.append(model) 

   ​print​(​'>loaded %s'​ % filename) 
 ​return​ all_models 
 

n_members = ​3 
members = load_all_models(n_members) 

print​(​'Loaded %d models'​ % ​len​(members)) 

 

 



6.6.  Data Preprocessing for Stacked Model (Three-Category) 

def​ ​normal_nonnormal​(​x​): 
   ​if​ x == ​'Normal'​: 
       ​return​ x 
   ​else​: 
       ​return​ ​'Non-Normal' 
df = pd.read_csv(​'/content/drive/My Drive/CombinedImages.zip (Unzipped 
Files)/CombinedImages/data.csv'​) 

 

print​(df) 

 

na_fill = {​'VirusCategory1'​: ​'Normal'​} 
# na_fill2 = {'VirusCategory2': 'Normal2'} 

df = df.fillna(value = na_fill) ​#switch na to normal (dataset error) 
# df = df.fillna(value = na_fill2) 

print​(df.VirusCategory1.unique())​#print class labels in dataset 
 

def​ ​class_label1​(​x​): 
 ​if​ x == ​'Normal'​ ​or​ x == ​'No Finding'​: 
     y = ​'Normal' 
 ​elif​ x == ​'COVID-19'​ ​or​ x == ​'COVID-19, ARDS'​ : 
     y = ​'COVID-19' 
 ​#elif x != 'Pneumocystis' or x != 'Lipoid': 
   ​#y = 'tertiary' 
 ​elif​ x ​in​ [​'Bacterial'​, ​'bacteria'​]:​#, 'E.Coli','Chlamydophila', 
'Klebsiella','Legionella','Mycoplasma Bacterial Pneumonia', 'bacteria', 

'Virus']: 

     y = ​'tertiary' 
 ​else​: 
     y = x 

 ​return​ y 
 

print​(df.VirusCategory1.​map​(class_label1)) 
df.VirusCategory1 = df.VirusCategory1.​map​(class_label1) 
 

print​(df.VirusCategory1) 
 

 



df = df.join(pd.get_dummies(df.VirusCategory1.values, prefix = ​'type'​)) 
#one hot 

 

# df = df[['ImagePath', 'VirusCategory1', 'type_COVID-19', 

'type_Bacterial', 'type_virus']] #only columns needed 

X = df[[​'ImagePath'​, ​'VirusCategory1'​]] 
y = df[[​'type_Normal'​, ​'type_COVID-19'​, ​'type_tertiary'​]] 
print​(df) 
 

x_train, x_test, y_train, y_test = train_test_split(X,y, random_state = 

45​, 
                                                  train_size = ​0.9​) 
#stratify = X.VirusCategory1.values) 

 

print​(x_train.VirusCategory1.value_counts()) 
x_train = x_train.drop(​'VirusCategory1'​, axis = ​1​) ​#only using this 
category to stratify 

x_test = x_test.drop(​'VirusCategory1'​, axis = ​1​) 
 

def​ ​get_image_value​(​path​): 
   ​'''This function will retrive the RGB array for an image given its 
path''' 

   img = image.load_img(path, target_size = (​425​,​425​,​3​)) 
   img = image.img_to_array(img) 

  

   ​return​ img/​255 
 

 

def​ ​get_data​(​df​): 
   ​'''This function will retrive the paths for each item within a sample, 
and call get_image_value to retrieve 

   the RGB array for each image''' 

   ​from​ tqdm ​import​ tqdm 
   img_list = [] 

   ​for​ path ​in​ tqdm(df.ImagePath.values, desc = ​'Gathering Image Arrays'​): 
       path = ​f​'/content/drive/My Drive/CombinedImages.zip (Unzipped 
Files)/CombinedImages/all/​{path}​' 
       img_list.append(get_image_value(path)) 

   ​return​ np.array(img_list).squeeze() 
x_test = get_data(x_test) 

 



x_train = get_data(x_train) 

 

def​ ​stacked_dataset​(​members​, ​inputX​): 
 stackX = ​None 
 ​for​ i ​in​ ​range​(​len​(members)): 
   model = members[i] 

   ​# make prediction 
   yhat = model.predict(inputX, verbose=​0​) 
   ​# stack predictions into [rows, members, probabilities] 
   ​if​ stackX ​is​ ​None​: 
     stackX = yhat 

   ​else​: 
     stackX = numpy.dstack((stackX, yhat)) 

   ​# flatten predictions to [rows, members x probabilities] 
 stackX = stackX.reshape((stackX.shape[​0​], 
stackX.shape[​1​]*stackX.shape[​2​])) 
 ​return​ stackX 
 

6.7.  Stacked Model Construction and Training 

def​ ​define_stacked_model​(​members​): 
 ​for​ i ​in​ ​range​(​len​(members)): 
   model = members[i] 

   ​for​ layer ​in​ model.layers: 
     layer.trainable = ​False 
     layer._name = ​'ensemble_'​ + str(i+​1​) + ​'_'​ + layer.name 
 meta_model = keras.models.Sequential() 

 meta_model.add(keras.layers.Flatten(input_shape=[​3​,​1​]))​#9 inputs for 
three-class classification 

 meta_model.add(keras.layers.Dense(​100​, activation=​'relu'​)) 
 meta_model.add(keras.layers.Dense(​1​, activation=​'sigmoid'​))​#softmax for 
three-class classification 

 plot_model(meta_model, show_shapes=​True​, to_file=​'meta_model.png'​) 
 meta_model.​compile​(loss=​'binary_crossentropy'​, optimizer=​'adam'​, 
metrics=[​'accuracy'​])​#categorical_crossentropy for three-class 
classification 

 ​return​ meta_model 
 

stackX = stacked_dataset(members, x_train) 

stacked_model = define_stacked_model(members) 

 



early_stopping = EarlyStopping(monitor=​'val_loss'​, verbose = ​1​, 
patience=​5​, min_delta = ​.002​) ​#prevents overfitting 
model_checkpoint = ModelCheckpoint(​'ensemble.h5'​, verbose = ​1​, 
save_best_only=​True​, 
                                 monitor = ​'val_loss'​, min_delta = ​.002​) 
#saves weight as val loss decreases 

history = stacked_model.fit(stackX, y_train, epochs=​50​, verbose=​0​, 
validation_data = (stacked_dataset(members, x_test), y_test), callbacks = 

[early_stopping, model_checkpoint]) 

 

6.8. PneumoStack Evaluation and Performance Visualization for Binary Classification 

def​ ​stacked_prediction​(​members​, ​model​, ​inputX​): 
 ​# create dataset using ensemble 
 stackedX = stacked_dataset(members, inputX) 

 ​# make a prediction 
 yhat = model.predict(stackedX) 

 ​return​ yhat 
 

#print accuracy for individual models 

for​ model ​in​ members: 
 _, acc = model.evaluate(x_test, y_test, verbose=​0​) 
 ​print​(​'Model Accuracy: %.3f'​ % acc) 
 

from​ sklearn.metrics ​import​ accuracy_score 
yhat = stacked_prediction(members, stacked_model, x_test) 

print​(​'test'​, y_test) 
print​(​'hat'​, yhat) 
yhat = np.rint(yhat) 

acc = accuracy_score(y_test, yhat) 

print​(​'Stacked Test Accuracy: %.3f'​ % acc) 
 

train_loss = history.history[​'loss'​] 
train_acc = history.history[​'accuracy'​] 
test_loss = history.history[​'val_loss'​] 
test_acc = history.history[​'val_accuracy'​] 
epochs = [i ​for​ i ​in​ ​range​(​1​, ​len​(test_acc)+​1​)] 
 

fig, ax = plt.subplots(​1​,​2​, figsize = (​15​,​5​)) 

 



ax[​0​].plot(epochs, train_loss, label = ​'Train Loss'​) 
ax[​0​].plot(epochs, test_loss, label = ​'Test Loss'​) 
ax[​0​].set_title(​'Train/Test Loss'​) 
ax[​0​].set_xlabel(​'Epochs'​) 
ax[​0​].set_ylabel(​'Loss'​) 
ax[​0​].legend() 
 

ax[​1​].plot(epochs, train_acc, label = ​'Train Accuracy'​) 
ax[​1​].plot(epochs, test_acc, label = ​'Test Accuracy'​) 
ax[​1​].set_title(​'Train/Test Accuracy'​) 
ax[​1​].set_xlabel(​'Epochs'​) 
ax[​1​].set_ylabel(​'Loss'​) 
ax[​1​].legend() 
 

from​ sklearn.metrics ​import​ roc_curve, roc_auc_score, 
precision_recall_curve, f1_score, auc 

 

stacked_model.load_weights(​'ensemble.h5'​) ​#load the best weights before 
overfitting 

 

y_test_precision, y_test_recall, spec = precision_recall_curve(y_test, 

yhat) 

y_test_predict = np.where(yhat >= ​.5​, ​1​, ​0​).ravel() 
y_test_f1= f1_score(y_test, y_test_predict) 

y_test_auc = auc(y_test_recall, y_test_precision) 

no_skill = ​len​(y_test[y_test==​1​]) / ​len​(y_test) 
 

import​ matplotlib.pyplot ​as​ plt 
 

fig, ax = plt.subplots(​1​,​2​, figsize = (​15​,​6​)) 
 

ax[​0​].plot(y_test_recall, y_test_precision, marker=​'.'​, label=​'Stacked 
model'​) 
ax[​0​].plot([​0​, ​1​], [no_skill, no_skill], linestyle=​'--'​, label=​'50/50'​, 
color = ​'Black'​) 
ax[​0​].set_xlabel(​'Recall'​) 
ax[​0​].set_ylabel(​'Precision'​) 
ax[​0​].set_title(​f​'Precision Recall'​) 
ax[​0​].legend() 
 

 



 

#ROC CURVE 

ns_probs = [​0​ ​for​ i ​in​ ​range​(​len​(y_test))] 
ns_auc = roc_auc_score(y_test, ns_probs) 

y_test_roc = roc_auc_score(y_test, yhat) 

 

ns_fpr, ns_tpr, _ = roc_curve(y_test, ns_probs) 

y_test_fpr, y_test_tpr, threshold = roc_curve(y_test, yhat) 

ax[​1​].plot(ns_fpr, ns_tpr, linestyle=​'--'​, label=​'50/50'​) 
ax[​1​].plot(y_test_fpr, y_test_tpr, marker=​'.'​, label=​'Stacked model'​) 
ax[​1​].set_xlabel(​'False Positive Rate'​) 
ax[​1​].set_ylabel(​'True Positive Rate'​) 
ax[​1​].set_title(​f​'ROC Curve'​) 
ax[​1​].legend() 
plt.show() 

 

 

pd.DataFrame({​'F1 Score'​: ​round​(y_test_f1, ​3​), ​'AUC'​: ​round​(y_test_auc, 
3​), ​'ROC'​:​round​(y_test_roc, ​3​)}, index = [​0​]) 
 

import​ itertools 
import​ seaborn ​as​ sns 
 

#confusion matrix 

def​ ​plot_confusion_matrix​(​y_test​,​y_train​, ​y_train_prob​, 
y_test_prob​,​thresholds​, ​classes​, 
                         ​cmap​=plt.cm.Blues): 
   fig, ax = plt.subplots(​len​(thresholds),​2​, figsize = (​10​,​10​)) 
 

   ​for​ idx, thresh ​in​ ​enumerate​(thresholds): 
       y_test_predict = np.where(y_test_prob >= thresh, ​1​, ​0​) 
       y_train_predict = np.where(y_train_prob >= thresh, ​1​, ​0​) 
       train_cm = confusion_matrix(y_train, y_train_predict) 

       test_cm = confusion_matrix(y_test, y_test_predict) 

  

       ​#test confusion 
       ax[idx, ​0​].imshow(test_cm,  cmap=plt.cm.Blues) 
 

       ax[idx, ​0​].set_title(​f​'Test: Confusion Matrix ​|​ Threshold: 
{thresh}​'​) 

 



       ax[idx, ​0​].set_ylabel(​'True label'​) 
       ax[idx, ​0​].set_xlabel(​'Predicted label'​) 
 

       class_names = classes 

       tick_marks = np.arange(​len​(class_names)) 
       ax[idx, ​0​].set_xticks(tick_marks) 
       ax[idx,​0​].set_xticklabels(class_names) 
       ax[idx, ​0​].set_yticks(tick_marks) 
       ax[idx, ​0​].set_yticklabels(class_names) 
 

       th = test_cm.​max​() / ​2​. 
 

       ​for​ i, j ​in​ itertools.product(​range​(test_cm.shape[​0​]), 
range​(test_cm.shape[​1​])): 
               ax[idx, ​0​].text(j, i, ​f​'​{test_cm[i, j]}​'​,​# | 
{int(round(test_cm[i,j]/test_cm.ravel().sum(),5)*100)}%', 

                        horizontalalignment=​'center'​, 
                        color=​'white'​ ​if​ test_cm[i, j] > th ​else​ ​'black'​) 
       ax[idx, ​0​].set_ylim([​-.5​,​1.5​]) 
  

       ​#TRAIN CONFUSION 
       ax[idx, ​1​].imshow(train_cm,  cmap=plt.cm.Blues) 
 

       ax[idx, ​1​].set_title(​f​'Train: Confusion Matrix ​|​ Threshold: 
{thresh}​'​) 
       ax[idx, ​1​].set_ylabel(​'True label'​) 
       ax[idx, ​1​].set_xlabel(​'Predicted label'​) 
 

       class_names = classes 

       tick_marks = np.arange(​len​(class_names)) 
       ax[idx, ​1​].set_xticks(tick_marks) 
       ax[idx,​1​].set_xticklabels(class_names) 
       ax[idx, ​1​].set_yticks(tick_marks) 
       ax[idx, ​1​].set_yticklabels(class_names) 
 

 

       th = train_cm.​max​() / ​2​. 
 

       ​for​ i, j ​in​ itertools.product(​range​(train_cm.shape[​0​]), 
range​(train_cm.shape[​1​])): 

 



               ax[idx, ​1​].text(j, i, ​f​'​{train_cm[i, j]}​'​,​# | 
{int(round(train_cm[i,j]/train_cm.ravel().sum(),5)*100)}%', 

                        horizontalalignment=​'center'​, 
                        color=​'white'​ ​if​ train_cm[i, j] > th ​else​ ​'black'​) 
       ax[idx, ​1​].set_ylim([​-.5​,​1.5​]) 
   plt.tight_layout() 

   plt.show() 

  

 

plot_confusion_matrix(y_train = y_train, y_test = y_test, y_train_prob = 

stacked_prediction(members, stacked_model, x_train), 

                     y_test_prob = yhat, classes = [​'Normal'​, 
'NonNormal'​], thresholds = [​.2​, ​.5​,​.6​]) 
 

6.9. PneumoStack Evaluation and Performance Visualization for Three-Category 

Classification 

from​ numpy ​import​ argmax 
y_pred = normal_model1.predict(x_train) 

y_test.columns = [​0​, ​1​, ​2​] 
y_test.idxmax(axis=​1​) 
y_pred.shape 

a = y_test.idxmax(axis=​1​) 
b = argmax(y_pred, axis=​1​) 
 

import​ keras 
from​ keras.models ​import​ load_model 
 

def​ ​load_all_models​(​n_models​): 
 all_models = list() 

 ​for​ i ​in​ ​range​(n_models): 
   ​# define filename for this ensemble 
   filename = ​'models/model_'​ + str(i + ​1​) + ​'.h5' 
   ​# load model from file 
   model = load_model(filename) 

   ​# add to list of members 
   all_models.append(model) 

   ​print​(​'>loaded %s'​ % filename) 
 ​return​ all_models 

 



 

n_members = ​3 
members = load_all_models(n_members) 

print​(​'Loaded %d models'​ % ​len​(members)) 
 

from​ sklearn.metrics ​import​ accuracy_score 
 

yhat = stacked_prediction(members, stacked_model, x_test) 

print​(​'test'​, y_test) 
print​(​'hat'​, yhat) 
yhat = np.rint(yhat) 

#yhat = argmax(yhat, axis=1) 

acc = accuracy_score(y_test, yhat) 

print​(​'Stacked Test Accuracy: %.3f'​ % acc) 
 

train_loss = history.history[​'loss'​] 
train_acc = history.history[​'accuracy'​] 
test_loss = history.history[​'val_loss'​] 
test_acc = history.history[​'val_accuracy'​] 
epochs = [i ​for​ i ​in​ ​range​(​1​, ​len​(test_acc)+​1​)] 
 

fig, ax = plt.subplots(​1​,​2​, figsize = (​15​,​5​)) 
ax[​0​].plot(epochs, train_loss, label = ​'Train Loss'​) 
ax[​0​].plot(epochs, test_loss, label = ​'Test Loss'​) 
ax[​0​].set_title(​'Train/Test Loss'​) 
ax[​0​].set_xlabel(​'Epochs'​) 
ax[​0​].set_ylabel(​'Loss'​) 
ax[​0​].legend() 
 

ax[​1​].plot(epochs, train_acc, label = ​'Train Accuracy'​) 
ax[​1​].plot(epochs, test_acc, label = ​'Test Accuracy'​) 
ax[​1​].set_title(​'Train/Test Accuracy'​) 
ax[​1​].set_xlabel(​'Epochs'​) 
ax[​1​].set_ylabel(​'Loss'​) 
ax[​1​].legend() 
 

from​ sklearn.metrics ​import​ multilabel_confusion_matrix 
from​ numpy ​import​ argmax 
# confusion_matrix(y_test.idxmax(axis=1).tolist(), argmax(yhat, axis = 1), 

labels=['type_Normal', 'type_COVID-19', 'type_virus', 'type_Bacterial']) 

 



cm = confusion_matrix(y_test.idxmax(axis=​1​).tolist(), argmax(yhat, axis = 
1​)) 
 

def​ ​plot_confusion_matrix​(​cm​, ​classes​, 
                         ​normalize​=​False​, 
                         ​title​=​'Confusion matrix'​, 
                         ​cmap​=plt.cm.Blues): 
   ​""" 
   This function prints and plots the confusion matrix. 

   Normalization can be applied by setting `normalize=True`. 

   """ 

   ​import​ itertools 
   ​if​ normalize: 
       cm = cm.astype(​'float'​) / cm.​sum​(axis=​1​)[:, np.newaxis] 
       ​print​(​"Normalized confusion matrix"​) 
   ​else​: 
       ​print​(​'Confusion matrix, without normalization'​) 
 

   ​print​(cm) 
   plt.figure(dpi: ​400​, figsize: [​100​,​100​]) 
   plt.imshow(cm, interpolation=​'nearest'​, cmap=cmap) 
   plt.title(title) 

   plt.colorbar() 

   tick_marks = np.arange(​len​(classes)) 
   plt.xticks(tick_marks, classes, rotation=​45​) 
   plt.yticks(tick_marks, classes) 

 

   fmt = ​'.2f'​ ​if​ normalize ​else​ ​'d' 
   thresh = cm.​max​() / ​2​. 
   ​for​ i, j ​in​ itertools.product(​range​(cm.shape[​0​]), ​range​(cm.shape[​1​])): 
       plt.text(j, i, ​format​(cm[i, j], fmt), 
                horizontalalignment=​"center"​, 
                color=​"white"​ ​if​ cm[i, j] > thresh ​else​ ​"black"​) 
 

   plt.ylabel(​'True label'​) 
   plt.xlabel(​'Predicted label'​) 
   plt.tight_layout() 

 

 



plot_confusion_matrix(cm, classes = [​'type_Normal'​, ​'type_COVID-19'​, 
'type_tertiary'​], normalize = ​False​, title = ​'Three-class Confusion 
Matrix'​, cmap=plt.cm.Blues) 
 

recall = np.diag(cm) / np.​sum​(cm, axis = ​1​) 
precision = np.diag(cm) / np.​sum​(cm, axis = ​0​) 
recall = np.mean(recall) 

precision = np.mean(precision) 

pd.DataFrame({​'Precision'​: ​round​(precision, ​3​), ​'Recall'​: ​round​(recall, 
3​), ​'Accuracy'​:​round​(acc, ​3​)}, index = [​0​]) 
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