

PneumoStack:​ A Novel Approach to Automated Pneumonia and COVID-19 Diagnosis with

Chest X-Ray Analysis via Convolutional Neural Networks and Stacked Generalization

Sonya Jin

Table of Contents

1. Abstract 4

2. Introduction 4
2.1. Relevant Work 6
2.2. Aim 6
2.3. Convolutional Neural Networks 7

Figure 1. ​Sample CNN Architecture 8
2.4. Transfer Learning 8

Figure 2. ​The benefits of transfer learning​ [8] 9
2.4.1. Xception 9

Figure 3. ​Xception Architecture​ [10] 10
2.4.2. InceptionResNetV2 10

Figure 4. ​Compressed View of InceptionResNetV2 Architecture​ [14] 11
2.4.3. ResNet50 11

Figure 5. ​ResNet50 Architecture​ [13] 12
2.5. Ensemble learning 12

3. Methods 13
3.1. Dataset 13

Table 1. ​Number of images by label in dataset 14
Figure 6. ​Data samples 14

3.2. Data Augmentation 14
Figure 7.​ Nine images with randomly applied data augmentation techniques 15

3.3. Implementation of Transfer Learning 15
Figure 8. ​Binary cross-entropy 16
Figure 9. ​Categorical cross-entropy 16

3.4. Stacked Model 17
Figure 10. ​Schematic diagram of proposed model 17

3.5. Performance Metrics 18
Figure 11. ​Definition of performance metrics 18

3.6. Operating System 19

4. Results 19

4.1. Binary Classification Results 19
Table 2. ​Binary classification results 19
Figure 12. ​Stacked model binary classification unnormalized confusion matrix 20
Figure 13. ​Stacked model binary classification Precision-Recall and ROC Curves 20

4.2. Three-Category Classification Results 21
Table 3. ​Stacked model three-category classification results 21
Figure 14. ​Three-category unnormalized confusion matrix 21

5. Conclusion 22
Table 4. ​Comparison of PneumoStack to models in other studies 22

6. Code 23
6.1. Data Preprocessing for Individual Transfer Learning Models 23
6.2. Xception Construction and Training 26
6.3. InceptionResNetV2 Construction and Training 28
6.4. ResNet50 Construction and Training 29
6.5. Data Preprocessing for Stacked Model (Binary) 30
6.6. Data Preprocessing for Stacked Model (Three-Category) 33
6.7. Stacked Model Construction and Training 35
6.8. PneumoStack Evaluation and Performance Visualization for Binary Classification 36
6.9. PneumoStack Evaluation and Performance Visualization for Three-Category
Classification 40

7. References 44

1. Abstract

Pneumonia is the single largest infectious cause of death in children worldwide,

accounting for 15% of all deaths of children under 5 years old. Regarding the current pandemic,

chest X-ray (CXR) analysis is needed to rectify false negatives from RT-PCR in COVID

diagnosis, emphasizing the need to improve diagnostic accuracy. As CXRs are the principal

diagnostic tool for pneumonia, automating medical image analysis with medical image

classification can aid radiologists in expediting and improving the diagnostic process. Research

in deep learning for medical image analysis has utilized individual transfer learning neural

networks as well as neural network ensembles constructed by means such as bootstrap

aggregation and soft-voting. This study presents a novel stacked model for CXR analysis

composed of three CNN architectures: InceptionResNetV2, Xception, and ResNet50. All three

pre-trained models were trained on a chest X-ray dataset for binary classification and multi-class

classification and ensembled via stacked generalization into a neural network meta-learner. The

proposed stacked model (Pneumostack) achieved an accuracy of 95.4% in three-category

classification (COVID-19, non-COVID pneumonia, and normal) and 99.8% in binary

classification (normal and pneumonia), outperforming any one of its single constituent classifiers

and other models presented in current literature. Surpassing existing transfer learning models and

ensembles, Pneumostack opens doors to higher performance in automated CXR analysis and

other CNN applications in medicine.

2. Introduction

Pneumonia is a lung infection that causes the alveoli of the lungs to fill with pus, causing

symptoms such as coughing, difficulty breathing, and fever [2]. It can be caused by bacteria,

Streptococcus pneumoniae​ being the most common, and viruses, including SARS-CoV-2 [2].

Complications of pneumonia, if the disease is left untreated, include acute respiratory distress

(ARDS), respiratory failure, necrotizing pneumonia, pleural disorders, organ damage, and sepsis

[2]. Chest X-rays (CXRs) are the principal diagnostic tool, or the “gold standard”, for pneumonia

diagnosis [1]. Lobar and lobular consolidation are characteristic of bacterial pneumonia, while

interstitial opacities are characteristic of viral pneumonia [3]. Automated diagnosis methods can

extract these characteristic features, minimizing false predictions from human intervention. In

the event that trained radiologists are limited, automated diagnosis can reduce child mortality

rates in regions where pneumonia is most prevalent - South Asia and sub-Saharan Africa [1].

COVID-19 As Chest X-rays (CXR) are the principal diagnostic tool for pneumonia [2],

automating medical image analysis with medical image classification can aid radiologists in

expediting and improving the diagnostic process in time and accuracy.

Coronavirus disease (COVID-19) is an infectious disease that causes mild to moderate

respiratory illness [28]. In rare cases, COVID-19 can lead to severe respiratory problems, kidney

failure, or death [28]. Currently, the principal diagnostic method is the reverse-transcription

polymerase chain reaction (RT-PCR) laboratory test that detects RNA specific to the

SARS-CoV-2 virus with the nasopharyngeal or oropharyngeal swab [29]. Additionally, patterns

of COVID-19 can be identified on CXRs. Reported typical radiological findings include

multifocal and bilateral ground glass opacities and consolidations with peripheral and basal

predominance [30]. Unique features of COVID-19 pneumonia are peripheral air space opacities

and bilateral lower lobe consolidations with lower-lung distribution [31]. Recent reports have

revealed that RT-PCR has a sensitivity as low as 60%-71% for detecting COVID-19, while

CXRs have a sensitivity of 69% [4], presenting the possibility for CXR analysis rectifying false

negative findings in RT-PCR in COVID-19 diagnosis and the need to improve CXR analysis

accuracy.

2.1. Relevant Work

CNNs have been at the forefront of automated CXR analysis research in effort to detect

pneumonia and COVID-19. Wang et al. [16] constructed COVID-Net, a tailored CNN for the

detection of COVID-19 with a projection-expansion-projection-extension (PEPX) design pattern.

With three classes (non-COVID pneumonia, COVID-19, normal), the model achieved an

accuracy of 93.3%. Apostolopoulos et al. [17] used VGG-19 as a base model for three classes

and achieved an accuracy of 87%. Umer et al. [18] proposed COVINet, a CNN approach with

three convolutional layers, a max pooling layer, an average pooling layer, and four FC layers.

COVINet achieved an accuracy of 89.9% with three classes. Nishio et. al. [19] used VGG-16 for

the detection of three classes and achieved an accuracy of 83.68% with a combination of data

augmentation methods - conventional and mixup. For binary classification, many approaches

were proposed, such as the MADE-based CNN [20] with 92.55% accuracy, Deep CNN [23] with

93% accuracy, and a weighted voting ensemble [33] with a 72.26% accuracy.

2.2. Aim

In contrast to other ensembling methods and the use of individual transfer learning

models, the aim of this study is to present a stacked convolutional neural network meta-learner of

transfer learning CNNs with stacked generalization in effort to achieve higher performance than

any one of its constituent classifiers and existing individual models in binary and multiclass

pneumonia CXR classification.

2.3. Convolutional Neural Networks

Convolutional neural networks (CNNs), a deep learning algorithm, has shown

unsurpassed success in varying image classification tasks due to their capabilities of automated

unsupervised feature extraction and dimensionality reduction, making it suitable for CXR

analysis [3]. A CNN consists of an input layer, hidden convolutional layers, ReLU layers,

pooling layers, fully-connected (FC) layers, and an output layer. The convolutional layer applies

a convolution operation to the input from a subarea of the previous layer, passing the generated

feature map on to the next layer. The ReLU layer then applies an activation function on the

passed feature map to increase non-linearity in the network, removing negative values from the

map by setting them to zero. Pooling downsamples the detection of feature maps and decreases

training time. Finally, the FC layers drive the final classification predictions by taking the output

of the hidden layers and giving the final probabilities for each label [3]. A CNN requires less

data preprocessing and reaches better results than other classification algorithms due to its

capability of capturing spatial and temporal dependencies in an image [3]. Moreover, CNNs

convolve learned features with input data through 2D convolutional layers to extract high-level

features, making this network ideal for processing 2D images, such as CXRs.

Figure 1.​ Sample CNN Architecture

2.4. Transfer Learning

Transfer learning is a machine learning method where a model developed for a

task is reused as a starting point for another task [6]. In the application for image classification,

transfer learning models are sourced from base models pre-trained on the ImageNet 1000-class

classification competition with over 1,000,000 images [6]. With transfer learning, one can

achieve higher accuracy with a small dataset as the pre-trained weights can already recognize

generic image features in earlier layers, eliminating the need to train a network from scratch with

suboptimal weights. The source model is fine-tuned with the train-freezing of later layers that are

more dataset-specific and then trained on the dataset. The main benefits of transfer learning

include a higher y-intercept, slope, and asymptote in performance [8].

Figure 2.​ ​The benefits of transfer learning​ [8]

2.4.1. Xception

Xception is a convolutional neural network architecture composed of a linear stack of

depthwise separable convolution layers with residual connections [10]. The architecture has 36

convolutional layers forming the feature extraction base which are structured into 14 models

with outlined linear residual connections [10]. This model outperformed VGGNet, ResNet, and

InceptionV3 in ImageNet with 94.5% [15].

Figure 3.​ ​Xception Architecture​ [10]

2.4.2. InceptionResNetV2

Similarly, InceptionResNetV2 combines the Inception architecture with residual

connections that replaces the filter concatenation stage of Inception. Each Inception block is

followed by a filter expansion layer that scales up the dimensionality of the filters.

Inception-ResNetV2 also has batch-normalization only on top of the traditional Inception layers,

but not on top of the summations to increase the overall number of Inception blocks [14]. This

model outperformed InceptionV3 and ResNet152 on ImageNet with a 94.6% performance.

Figure 4. ​Compressed View of InceptionResNetV2 Architecture​ [14]

2.4.3. ResNet50

The ResNet50 architecture introduces the concept of skip-wise connections, which allows

the training of extremely deep neural networks with 50+ layers successfully without degradation

[13]. Previously, this was impossible due to the vanishing gradient problem that persists as more

layers are added to a neural network, abruptly degrading performance [13]. The model has 48

convolution layers along with a max pooling layer and an average pooling layer [13]. ResNet50

was the winner of ImageNet 2015 with a 93% accuracy [15].

Figure 5. ​ResNet50 Architecture ​[13]

2.5. Ensemble learning

Ensemble learning is a method used to maximize detection performance by combining

the results of single constituent algorithms [4]. The purpose of ensemble learning is to harness

the capabilities of a range of well-performing models on a classification task and manipulate the

predictions of the models to construct an ensemble that outperforms any single model in the

ensemble [9]. One frequently used ensemble method is bootstrap aggregating, which involves the

creation of random samples of training data with replacement [32]. A model is then built for each

sample, and the results of the multiple models are combined with average or majority voting

[32]. Another method is boosting - an iterative technique that adjusts the weight of an

observation considering the preceding classification - which decreases bias error [32]. However,

a drawback of this method is that it tends to overfit the training data [32]. Furthermore, stacked

generalization is an ensembling method that involves constructing a meta-model that trains on

the predictions made by its base models on out-of-sample data [9]. The base models (Level-0

models) fit on the training data, and the predictions are compiled. The meta-model (Level-1

model) then learns how to best combine the predictions of the base models [9]. To reap the

benefits of different CNN architectures, stacked generalization was the ensembling method of

choice for this study.

3. Methods

3.1. Dataset

In this work, the Cohen et. al COVID-19 Image Data Collection [11] dataset was

modified and used. The 5829-image dataset comprises of a collection of COVID-19 (461),

non-COVID-19 viral pneumonia (1414), bacterial pneumonia (2521), and normal (1433) X-rays

collected at the Guangzhou Women and Children’s Medical Center. The dataset also contains

X-ray images of the fungal ​Pneumocystis ​pneumonia and lipoid pneumonia, but these images

were removed for this study as they are not caused by viral or bacterial strains.

.

Table 1. ​Number of images by label in dataset

Figure 6 shows samples of a normal, viral pneumonia, bacterial pneumonia, and

COVID-19 scan. The scans are as follows: (A) Normal scan, (B) Viral pneumonia, (C) Bacterial

pneumonia, (D) COVID-19 pneumonia.

Figure 6. ​Data samples

3.2. Data Augmentation

Augmentation can aid in the transform invariant approach of feature-learning in CNNs

with the inclusion of invariant transformations [34]. The dataset was augmented with four

transformations: horizontal flip, rotation, vertical shift, and horizontal shift. The images were

horizontally shifted by 10%, vertically shifted by 10%, rotated by 15 degrees clockwise, and

flipped along the horizontal axis. Figure 3 shows nine images with the applied transformations

specified above at random.

Figure 7. ​Nine images with randomly applied data augmentation techniques

3.3. Implementation of Transfer Learning

Xception, InceptionResNetV2, and ResNet50 were constructed and pre-trained weights

were loaded from ImageNet. The first 10 layers were frozen. After the convolution layers of the

source model, a global max pooling layer, three dropout layers, and three FC Dense layers were

added. Rectified linear unit was used as the activation function for the first FC layer. In binary

classification, the activation function of the last FC layer was sigmoid. In three-category

classification, softmax was used in place of sigmoid. All models were compiled with Adam

optimization. Binary and categorical cross-entropy were used to calculate loss for binary and

three-class classification, respectively, as defined below:

Figure 8. ​Binary cross-entropy

Where:

● C​1​ and C​2​ are the two classes (pneumonia vs. normal)

● t​1​ [0,1] and s​1​ are the ground truth and the score for C​1

● t​2​ = 1 - t1 and s​2​ = 1 - s​2​; they are the groundtruth and the score for C​2

Figure 9. ​Categorical cross-entropy

Where:

● C is the number of classes

● s​p​ is the predicted score for the positive class

In training, callbacks such as ModelCheckpoint, EarlyStopping, and ReduceLROnPlateau

were used to prevent the model from overfitting on training data.

3.4. Stacked Model

All layers in each of the ensemble’s individual models were frozen. A dataset with the

predictions of Xception, InceptionResNetV2, and ResNet50 was constructed after the training of

individual models. A sequential CNN architecture was used to construct the stacked model with

a Flatten layer that takes 3 inputs for binary classification and 9 inputs for three-category

classification, a FC Dense layer with ReLU activation, and a FC Dense layer with sigmoid

(binary)/softmax (three-category) activation. The model was compiled with Adam optimization

and either binary or categorical cross entropy.

Figure 10.​ ​Schematic diagram of proposed model

3.5. Performance Metrics

To avoid the accuracy paradox in binary classification, multiple performance metrics

besides accuracy were used to evaluate the individual models and the stacked model. The

performance metrics used for binary classification are the Sørensen–Dice coefficient, AUC and

accuracy for binary classification. Accuracy, precision, and recall were used for three-category

classification.

The Sørensen–Dice coefficient (F​1​ score) is the weighted average of precision and recall

and is a popular metric for binary classification. The highest value is 1.0, indicating perfect

precision and recall, and the lowest possible value is 0. AUC [0,1] represents the degree of

separability and measures the model’s capability of distinguishing between classes by computing

the area under the receiver-operating characteristic (ROC) curve. Precision quantifies the number

of true positive class predictions, while recall is the percentage of true predictions classified.

Accuracy is the fraction of correct predictions over the total number of predictions.

Figure 11. ​Definition of Performance Metrics

Where:

● T​p​ = number of true positives

● T​n​ = number of true negatives

● F​p​ = number of false positives

● F​n​ = number of false negatives

3.6. Operating System

Deep learning models were constructed, trained, and evaluated on Google Colaboratory

with ​1xTesla K80 GPU, 2496 CUDA cores, 12GB GDDR5 VRAM, 2vCPU @2.3Ghz, 12.6 GB

RAM, and 64 GB disk space.

4. Results

4.1. Binary Classification Results

Table 2. ​Binary classification results

The stacked model outperformed all constituent classifiers - Xception,

InceptionResNetV2, and ResNet50 in binary classification with an accuracy 0.998 and a

Sørensen–Dice coefficient of 0.988.

Figure 12.​ ​Stacked model​ ​binary classification unnormalized confusion matrix

Figure 13. ​Stacked model binary classification Precision-Recall and ROC Curves

4.2. Three-Category Classification Results

Table 3.​ ​Stacked model three-category classification results

The stacked model outperformed all constituent classifiers - Xception,

InceptionResNetV2, and ResNet50 in three-category classification with an accuracy of 0.954.

Figure 14.​ ​Three-category unnormalized confusion matrix

5. Conclusion

The stacked model performed significantly better than its constituent models (Xception,

InceptionResNetV2, and ResNet50), as well as existing models used for pneumonia

binary/multiclass classification.

Table 4.​ ​Comparison of PneumoStack to models in other studies

The results of this study indicate that an ensemble Xception, InceptionResNetV2, and

ResNet50 constructed via stacked generalization has the potential to outperform existing

methods used for automated pneumonia/COVID-19 diagnosis. Limitations of this study include

developing and validating the proposed model on a public dataset. CXR characteristics from

these public datasets may differ from those found in clinical data. Future steps include

investigating PneumoStack performance on clinical CXRs to validate usability in a clinical

setting. To counter class imbalance in the dataset, the data augmentation may be redone with

synthetic minority oversampling technique (SMOTE). To investigate if this superior

performance projects onto other applied CNN tasks in medicine, Pneumostack may be used in

other medical imaging tasks such as MRI analysis for the early detection of neurodegenerative

disease, differential gene analysis, and biomarker identification. Ultimately, Pneumostack opens

the doors to higher CXR analysis performance in automated pneumonia and COVID-19

diagnosis, potentially paving the way for higher performance in various applied computer vision

tasks in medicine.

6. Code

6.1. Data Preprocessing for Individual Transfer Learning Models

#Importation of libraries
import​ cv2
import​ glob
import​ h5py
import​ shutil
import​ keras
import​ imgaug ​as​ aug
import​ numpy ​as​ np
import​ pandas ​as​ pd
import​ seaborn ​as​ sns
import​ matplotlib.pyplot ​as​ plt
import​ matplotlib.image ​as​ mimg
import​ imgaug.augmenters ​as​ augment
import​ tensorflow ​as​ tf
from​ os ​import​ listdir, makedirs, getcwd, remove
from​ os.path ​import​ isfile, join, abspath, exists, isdir, expanduser
from​ PIL ​import​ Image
from​ pathlib ​import​ Path

from​ skimage.io ​import​ imread
from​ skimage.transform ​import​ resize

from​ keras.models ​import​ Sequential, Model
from​ keras.applications.xception ​import​ Xception
from​ keras.applications.resnet50 ​import​ ResNet50
from​ keras.applications.vgg16 ​import​ VGG16, preprocess_input
from​ keras.preprocessing.image ​import​ ImageDataGenerator,load_img,
img_to_array

from​ keras.preprocessing ​import​ image
from​ keras.models ​import​ Sequential
from​ keras.layers ​import​ Conv2D, MaxPooling2D, Dense, Dropout, Input,
Flatten, SeparableConv2D,GlobalAveragePooling2D

from​ keras.layers ​import​ GlobalMaxPooling2D
from​ keras.layers.normalization ​import​ BatchNormalization
from​ keras.layers.merge ​import​ Concatenate
from​ keras.models ​import​ Model
from​ keras ​import​ backend ​as​ K
from​ keras.optimizers ​import​ Adam, SGD, RMSprop
from​ keras.utils.vis_utils ​import​ plot_model
from​ keras.callbacks ​import​ ModelCheckpoint, Callback,
EarlyStopping,EarlyStopping,TensorBoard,ReduceLROnPlateau,CSVLogger,Learni

ngRateScheduler

from​ keras.utils ​import​ to_categorical

from​ sklearn.model_selection ​import​ train_test_split
from​ sklearn.preprocessing ​import​ StandardScaler
from​ mlxtend.plotting ​import​ plot_confusion_matrix
from​ sklearn.metrics ​import​ confusion_matrix
color = sns.color_palette()

%matplotlib ​inline

from​ google.colab ​import​ drive
drive.mount(​'/content/drive'​)

def​ ​normal_nonnormal​(​x​):
 ​if​ x == ​'Normal'​:
 ​return​ x

 ​else​:
 ​return​ ​'Non-Normal'
df = pd.read_csv(​'/content/drive/My Drive/CombinedImages.zip (Unzipped
Files)/CombinedImages/CombinedUpdated.csv'​)

na_fill = {​'VirusCategory1'​: ​'Normal'​}
df = df.fillna(value = na_fill) ​#switch na to normal (dataset error)

df.VirusCategory1 = df.VirusCategory1.​map​(normal_nonnormal)
df = df.join(pd.get_dummies(df.VirusCategory1.values, prefix = ​'type'​))
#one hot

df = df[[​'ImagePath'​, ​'VirusCategory1'​, ​'type_Non-Normal'​]] ​#only columns
needed

X = df[[​'ImagePath'​, ​'VirusCategory1'​]]
y = df[[​'type_Non-Normal'​]]
train, test = train_test_split(df)

x_train, x_test, y_train, y_test = train_test_split(X,y, random_state =

10​, stratify = X.VirusCategory1.values,
 train_size = ​.90​)

print​(x_train.VirusCategory1.value_counts())
x_train = x_train.drop(​'VirusCategory1'​, axis = ​1​)
x_test = x_test.drop(​'VirusCategory1'​, axis = ​1​)

def​ ​get_image_value​(​path​):
 ​#This function will retrieve the RGB array for an image given its path
 img = image.load_img(path, target_size = (​71​, ​71​,​3​))
 img = image.img_to_array(img)

 ​return​ img/​255

def​ ​get_data​(​df​):
 ​#This function will retrieve the paths for each item within a sample,
and call get_image_value to retrieve the RGB array for each image

 ​from​ tqdm ​import​ tqdm
 img_list = []

 ​for​ path ​in​ tqdm(df.ImagePath.values, desc = ​'Gathering Image Arrays'​):

 path = ​f​'/content/drive/My Drive/CombinedImages.zip (Unzipped
Files)/CombinedImages/all/​{path}​'
 img_list.append(get_image_value(path))

 ​return​ np.array(img_list).squeeze()
x_test = get_data(x_test)

x_train = get_data(x_train)

augmentation =ImageDataGenerator(rotation_range = ​15​, width_shift_range =
.1​, height_shift_range = ​.1​,
 horizontal_flip

= ​True​, fill_mode = ​'nearest'​) ​#augmentation
augmentation.fit(x_train)

6.2. Xception Construction and Training

def​ ​get_Xception​():
 base_model = tf.keras.applications.Xception(

 include_top=​False​,
 weights=​"imagenet"​,
 input_tensor=​None​,
 input_shape= (​225,225​, ​3​),
 pooling=​None​,
 classes=​1000​,
 classifier_activation=​"softmax"​,
)

 ​for​ layer ​in​ base_model.layers[:​-12​]:
 layer.trainable = ​False

 ​for​ layer ​in​ base_model.layers:
 ​print​(layer,layer.trainable)

 model = Sequential()

 model.add(base_model)

 model.add(GlobalMaxPooling2D())

 model.add(Dense(​1024​,activation=​'relu'​))
 model.add(Dropout(​0.5​))
 model.add(Dense(​512​,activation=​'relu'​))
 model.add(Dropout(​0.5​))

 model.add(Dense(​1​,activation=​'sigmoid'​))​#softmax for three-category, 3
inputs

 model.summary()

 plot_model(model, to_file=​'model_architecture.png'​, show_shapes=​True​,
show_layer_names=​True​)
 opt = SGD(lr=​1e-4​,momentum=​0.95​)
 opt1 = Adam(lr=​1e-4​)

 model.​compile​(
 loss=​'binary_crossentropy'​,​#categorical_crossentropy for three-class
 optimizer=opt1,

 metrics=[​'accuracy'​]
)

 ​return​ model

from​ tensorflow.keras.callbacks ​import​ ModelCheckpoint, EarlyStopping,
ReduceLROnPlateau

early_stopping = EarlyStopping(monitor=​'val_loss'​, verbose = ​1​,
patience=​5​, min_delta = ​.002​) ​#prevents overfitting
model_checkpoint = ModelCheckpoint(​'xception.h5'​, verbose = ​1​,
save_best_only=​True​,
 monitor = ​'val_loss'​, min_delta = ​.002​)
#saves weight as val loss decreases

lr_plat = ReduceLROnPlateau(patience = ​3​, mode = ​'min'​) ​#adjusts learning
rate if loss plateaus

epochs = ​50
batch_size = ​32
normal_model = get_Xception_normal()

normal_history = normal_model.fit(augmentation.flow(x_train, y_train,

batch_size = batch_size),

 epochs = epochs,

 callbacks = [early_stopping, model_checkpoint, lr_plat],

validation_data = (x_test, y_test), verbose= ​1​) ​#training

6.3. InceptionResNetV2 Construction and Training

def​ ​get_InceptionResNetV2_normal​():

 base_model = tf.keras.applications.InceptionResNetV2(include_top=​False​,
 input_shape = (​225​,​225​,​3​),
 weights = ​'imagenet'​)

 ​for​ layer ​in​ base_model.layers[:​-12​]:
 layer.trainable = ​False

 ​for​ layer ​in​ base_model.layers:
 ​print​(layer,layer.trainable)

 model = Sequential()

 model.add(base_model)

 model.add(GlobalAveragePooling2D())

 model.add(Dense(​1024​,activation=​'relu'​))
 model.add(Dropout(​0.5​))
 model.add(Dense(​512​,activation=​'relu'​))
 model.add(Dropout(​0.5​))
 model.add(Dense(​1​,activation=​'sigmoid'​)) ​#softmax for three-category, 3
inputs

 model.summary()

 plot_model(model, to_file=​'model_architecture.png'​, show_shapes=​True​,
show_layer_names=​True​)
 opt = SGD(lr=​1e-4​,momentum=​0.95​)
 opt1 = Adam(lr=​1e-4​)

 model.​compile​(
 loss=​'binary_crossentropy'​,​#categorical_crossentropy for three-class

 optimizer=opt1,

 metrics=[​'accuracy'​]
)

 ​return​ model

model_checkpoint = ModelCheckpoint(​'InceptionResNetV2.h5'​, verbose = ​1​,
save_best_only=​True​,
 monitor = ​'val_loss'​, min_delta = ​.002​)
#saves weight as val loss decreases

lr_plat = ReduceLROnPlateau(patience = ​3​, mode = ​'min'​) ​#adjusts learning
rate if loss plateaus

epochs = ​50
batch_size = ​32
normal_model = get_InceptionResNetV2_normal()

normal_history = normal_model.fit(augmentation.flow(x_train, y_train,

batch_size = batch_size),

 epochs = epochs,

 callbacks = [early_stopping, model_checkpoint, lr_plat],

validation_data = (x_test, y_test), verbose= ​1​)

6.4. ResNet50 Construction and Training

def​ ​get_ResNet50_normal​():

 base_model = applications.resnet50.ResNet50(weights= ​'imagenet'​,
include_top=​False​, input_shape= (​75​,​75​,​3​))

 ​for​ layer ​in​ base_model.layers[:​-12​]:
 layer.trainable = ​False

 ​for​ layer ​in​ base_model.layers:
 ​print​(layer,layer.trainable)

 model = Sequential()

 model.add(base_model)

 model.add(GlobalAveragePooling2D())

 model.add(Dense(​1024​,activation=​'relu'​))
 model.add(Dropout(​0.5​))
 model.add(Dense(​512​,activation=​'relu'​))
 model.add(Dropout(​0.5​))
 model.add(Dense(​1​,activation=​'sigmoid'​))​#softmax for three-category, 3
inputs

 model.summary()

 plot_model(model, to_file=​'model_architecture.png'​, show_shapes=​True​,
show_layer_names=​True​)
 opt = SGD(lr=​1e-4​,momentum=​0.95​)
 opt1 = Adam(lr=​1e-4​)

 model.​compile​(
 loss=​'binary_crossentropy'​,​#categorical_crossentropy for three-class

 optimizer=opt1,

 metrics=[​'accuracy'​]
)

 ​return​ model

model_checkpoint = ModelCheckpoint(​'resnet50.h5'​, verbose = ​1​,
save_best_only=​True​,
 monitor = ​'val_loss'​, min_delta = ​.002​)
#saves weight as val loss decreases

lr_plat = ReduceLROnPlateau(patience = ​3​, mode = ​'min'​) ​#adjusts learning
rate if loss plateaus

epochs = ​50
batch_size = ​32
normal_model = get_ResNet50_normal()

normal_history = normal_model.fit(augmentation.flow(x_train, y_train,

batch_size = batch_size),

 epochs = epochs,

 callbacks = [early_stopping, model_checkpoint, lr_plat],

validation_data = (x_test, y_test), verbose= ​1​)

6.5. Data Preprocessing for Stacked Model (Binary)

def​ ​normal_nonnormal​(​x​):
 ​if​ x == ​'Normal'​:
 ​return​ x
 ​else​:

 ​return​ ​'Non-Normal'
df = pd.read_csv(​'/content/drive/My Drive/CombinedImages.zip (Unzipped
Files)/CombinedImages/CombinedUpdated.csv'​)
#df = pd.read_csv('../CombinedImages/CombinedUpdated.csv')

na_fill = {​'VirusCategory1'​: ​'Normal'​}
df = df.fillna(value = na_fill) ​#switch na to normal (dataset error)

df.VirusCategory1 = df.VirusCategory1.​map​(normal_nonnormal)
df = df.join(pd.get_dummies(df.VirusCategory1.values, prefix = ​'type'​))
#one hot

df = df[[​'ImagePath'​, ​'VirusCategory1'​, ​'type_Non-Normal'​]] ​#only columns
needed

X = df[[​'ImagePath'​, ​'VirusCategory1'​]]
y = df[[​'type_Non-Normal'​]]

x_train, x_test, y_train, y_test = train_test_split(X,y, random_state =

10​, stratify = X.VirusCategory1.values,
 train_size = ​.80​)

print​(x_train.VirusCategory1.value_counts())
x_train = x_train.drop(​'VirusCategory1'​, axis = ​1​) ​#only using this
category to stratify

x_test = x_test.drop(​'VirusCategory1'​, axis = ​1​)

def​ ​get_image_value​(​path​):
 ​'''This function will retrive the RGB array for an image given its
path'''

 img = image.load_img(path, target_size = (​225​,​225​,​3​))
 img = image.img_to_array(img)

 ​return​ img/​255

def​ ​get_data​(​df​):
 ​'''This function will retrive the paths for each item within a sample,
and call get_image_value to retrieve

 the RGB array for each image'''

 ​from​ tqdm ​import​ tqdm
 img_list = []

 ​for​ path ​in​ tqdm(df.ImagePath.values, desc = ​'Gathering Image Arrays'​):
 path = ​f​'/content/drive/My Drive/CombinedImages.zip (Unzipped
Files)/CombinedImages/all/​{path}​'
 img_list.append(get_image_value(path))

 ​return​ np.array(img_list).squeeze()
x_test = get_data(x_test)

x_train = get_data(x_train)

from​ tensorflow.keras.callbacks ​import​ ModelCheckpoint, EarlyStopping,
ReduceLROnPlateau

from​ keras.preprocessing.image ​import​ ImageDataGenerator
augmentation =ImageDataGenerator(rotation_range = ​15​, width_shift_range =
.1​, height_shift_range = ​.1​,
 horizontal_flip

= ​True​, fill_mode = ​'nearest'​) ​#augmentation
augmentation.fit(x_train)

import​ keras
from​ keras.models ​import​ load_model

def​ ​load_all_models​(​n_models​):
 all_models = list()

 ​for​ i ​in​ ​range​(n_models):
 ​# define filename for this ensemble
 filename = ​'models/model_'​ + str(i + ​1​) + ​'.h5'
 ​# load model from file
 model = load_model(filename)

 ​# add to list of members
 all_models.append(model)

 ​print​(​'>loaded %s'​ % filename)
 ​return​ all_models

n_members = ​3
members = load_all_models(n_members)

print​(​'Loaded %d models'​ % ​len​(members))

6.6. Data Preprocessing for Stacked Model (Three-Category)

def​ ​normal_nonnormal​(​x​):
 ​if​ x == ​'Normal'​:
 ​return​ x
 ​else​:
 ​return​ ​'Non-Normal'
df = pd.read_csv(​'/content/drive/My Drive/CombinedImages.zip (Unzipped
Files)/CombinedImages/data.csv'​)

print​(df)

na_fill = {​'VirusCategory1'​: ​'Normal'​}
na_fill2 = {'VirusCategory2': 'Normal2'}

df = df.fillna(value = na_fill) ​#switch na to normal (dataset error)
df = df.fillna(value = na_fill2)

print​(df.VirusCategory1.unique())​#print class labels in dataset

def​ ​class_label1​(​x​):
 ​if​ x == ​'Normal'​ ​or​ x == ​'No Finding'​:
 y = ​'Normal'
 ​elif​ x == ​'COVID-19'​ ​or​ x == ​'COVID-19, ARDS'​ :
 y = ​'COVID-19'
 ​#elif x != 'Pneumocystis' or x != 'Lipoid':
 ​#y = 'tertiary'
 ​elif​ x ​in​ [​'Bacterial'​, ​'bacteria'​]:​#, 'E.Coli','Chlamydophila',
'Klebsiella','Legionella','Mycoplasma Bacterial Pneumonia', 'bacteria',

'Virus']:

 y = ​'tertiary'
 ​else​:
 y = x

 ​return​ y

print​(df.VirusCategory1.​map​(class_label1))
df.VirusCategory1 = df.VirusCategory1.​map​(class_label1)

print​(df.VirusCategory1)

df = df.join(pd.get_dummies(df.VirusCategory1.values, prefix = ​'type'​))
#one hot

df = df[['ImagePath', 'VirusCategory1', 'type_COVID-19',

'type_Bacterial', 'type_virus']] #only columns needed

X = df[[​'ImagePath'​, ​'VirusCategory1'​]]
y = df[[​'type_Normal'​, ​'type_COVID-19'​, ​'type_tertiary'​]]
print​(df)

x_train, x_test, y_train, y_test = train_test_split(X,y, random_state =

45​,
 train_size = ​0.9​)
#stratify = X.VirusCategory1.values)

print​(x_train.VirusCategory1.value_counts())
x_train = x_train.drop(​'VirusCategory1'​, axis = ​1​) ​#only using this
category to stratify

x_test = x_test.drop(​'VirusCategory1'​, axis = ​1​)

def​ ​get_image_value​(​path​):
 ​'''This function will retrive the RGB array for an image given its
path'''

 img = image.load_img(path, target_size = (​425​,​425​,​3​))
 img = image.img_to_array(img)

 ​return​ img/​255

def​ ​get_data​(​df​):
 ​'''This function will retrive the paths for each item within a sample,
and call get_image_value to retrieve

 the RGB array for each image'''

 ​from​ tqdm ​import​ tqdm
 img_list = []

 ​for​ path ​in​ tqdm(df.ImagePath.values, desc = ​'Gathering Image Arrays'​):
 path = ​f​'/content/drive/My Drive/CombinedImages.zip (Unzipped
Files)/CombinedImages/all/​{path}​'
 img_list.append(get_image_value(path))

 ​return​ np.array(img_list).squeeze()
x_test = get_data(x_test)

x_train = get_data(x_train)

def​ ​stacked_dataset​(​members​, ​inputX​):
 stackX = ​None
 ​for​ i ​in​ ​range​(​len​(members)):
 model = members[i]

 ​# make prediction
 yhat = model.predict(inputX, verbose=​0​)
 ​# stack predictions into [rows, members, probabilities]
 ​if​ stackX ​is​ ​None​:
 stackX = yhat

 ​else​:
 stackX = numpy.dstack((stackX, yhat))

 ​# flatten predictions to [rows, members x probabilities]
 stackX = stackX.reshape((stackX.shape[​0​],
stackX.shape[​1​]*stackX.shape[​2​]))
 ​return​ stackX

6.7. Stacked Model Construction and Training

def​ ​define_stacked_model​(​members​):
 ​for​ i ​in​ ​range​(​len​(members)):
 model = members[i]

 ​for​ layer ​in​ model.layers:
 layer.trainable = ​False
 layer._name = ​'ensemble_'​ + str(i+​1​) + ​'_'​ + layer.name
 meta_model = keras.models.Sequential()

 meta_model.add(keras.layers.Flatten(input_shape=[​3​,​1​]))​#9 inputs for
three-class classification

 meta_model.add(keras.layers.Dense(​100​, activation=​'relu'​))
 meta_model.add(keras.layers.Dense(​1​, activation=​'sigmoid'​))​#softmax for
three-class classification

 plot_model(meta_model, show_shapes=​True​, to_file=​'meta_model.png'​)
 meta_model.​compile​(loss=​'binary_crossentropy'​, optimizer=​'adam'​,
metrics=[​'accuracy'​])​#categorical_crossentropy for three-class
classification

 ​return​ meta_model

stackX = stacked_dataset(members, x_train)

stacked_model = define_stacked_model(members)

early_stopping = EarlyStopping(monitor=​'val_loss'​, verbose = ​1​,
patience=​5​, min_delta = ​.002​) ​#prevents overfitting
model_checkpoint = ModelCheckpoint(​'ensemble.h5'​, verbose = ​1​,
save_best_only=​True​,
 monitor = ​'val_loss'​, min_delta = ​.002​)
#saves weight as val loss decreases

history = stacked_model.fit(stackX, y_train, epochs=​50​, verbose=​0​,
validation_data = (stacked_dataset(members, x_test), y_test), callbacks =

[early_stopping, model_checkpoint])

6.8. PneumoStack Evaluation and Performance Visualization for Binary Classification

def​ ​stacked_prediction​(​members​, ​model​, ​inputX​):
 ​# create dataset using ensemble
 stackedX = stacked_dataset(members, inputX)

 ​# make a prediction
 yhat = model.predict(stackedX)

 ​return​ yhat

#print accuracy for individual models

for​ model ​in​ members:
 _, acc = model.evaluate(x_test, y_test, verbose=​0​)
 ​print​(​'Model Accuracy: %.3f'​ % acc)

from​ sklearn.metrics ​import​ accuracy_score
yhat = stacked_prediction(members, stacked_model, x_test)

print​(​'test'​, y_test)
print​(​'hat'​, yhat)
yhat = np.rint(yhat)

acc = accuracy_score(y_test, yhat)

print​(​'Stacked Test Accuracy: %.3f'​ % acc)

train_loss = history.history[​'loss'​]
train_acc = history.history[​'accuracy'​]
test_loss = history.history[​'val_loss'​]
test_acc = history.history[​'val_accuracy'​]
epochs = [i ​for​ i ​in​ ​range​(​1​, ​len​(test_acc)+​1​)]

fig, ax = plt.subplots(​1​,​2​, figsize = (​15​,​5​))

ax[​0​].plot(epochs, train_loss, label = ​'Train Loss'​)
ax[​0​].plot(epochs, test_loss, label = ​'Test Loss'​)
ax[​0​].set_title(​'Train/Test Loss'​)
ax[​0​].set_xlabel(​'Epochs'​)
ax[​0​].set_ylabel(​'Loss'​)
ax[​0​].legend()

ax[​1​].plot(epochs, train_acc, label = ​'Train Accuracy'​)
ax[​1​].plot(epochs, test_acc, label = ​'Test Accuracy'​)
ax[​1​].set_title(​'Train/Test Accuracy'​)
ax[​1​].set_xlabel(​'Epochs'​)
ax[​1​].set_ylabel(​'Loss'​)
ax[​1​].legend()

from​ sklearn.metrics ​import​ roc_curve, roc_auc_score,
precision_recall_curve, f1_score, auc

stacked_model.load_weights(​'ensemble.h5'​) ​#load the best weights before
overfitting

y_test_precision, y_test_recall, spec = precision_recall_curve(y_test,

yhat)

y_test_predict = np.where(yhat >= ​.5​, ​1​, ​0​).ravel()
y_test_f1= f1_score(y_test, y_test_predict)

y_test_auc = auc(y_test_recall, y_test_precision)

no_skill = ​len​(y_test[y_test==​1​]) / ​len​(y_test)

import​ matplotlib.pyplot ​as​ plt

fig, ax = plt.subplots(​1​,​2​, figsize = (​15​,​6​))

ax[​0​].plot(y_test_recall, y_test_precision, marker=​'.'​, label=​'Stacked
model'​)
ax[​0​].plot([​0​, ​1​], [no_skill, no_skill], linestyle=​'--'​, label=​'50/50'​,
color = ​'Black'​)
ax[​0​].set_xlabel(​'Recall'​)
ax[​0​].set_ylabel(​'Precision'​)
ax[​0​].set_title(​f​'Precision Recall'​)
ax[​0​].legend()

#ROC CURVE

ns_probs = [​0​ ​for​ i ​in​ ​range​(​len​(y_test))]
ns_auc = roc_auc_score(y_test, ns_probs)

y_test_roc = roc_auc_score(y_test, yhat)

ns_fpr, ns_tpr, _ = roc_curve(y_test, ns_probs)

y_test_fpr, y_test_tpr, threshold = roc_curve(y_test, yhat)

ax[​1​].plot(ns_fpr, ns_tpr, linestyle=​'--'​, label=​'50/50'​)
ax[​1​].plot(y_test_fpr, y_test_tpr, marker=​'.'​, label=​'Stacked model'​)
ax[​1​].set_xlabel(​'False Positive Rate'​)
ax[​1​].set_ylabel(​'True Positive Rate'​)
ax[​1​].set_title(​f​'ROC Curve'​)
ax[​1​].legend()
plt.show()

pd.DataFrame({​'F1 Score'​: ​round​(y_test_f1, ​3​), ​'AUC'​: ​round​(y_test_auc,
3​), ​'ROC'​:​round​(y_test_roc, ​3​)}, index = [​0​])

import​ itertools
import​ seaborn ​as​ sns

#confusion matrix

def​ ​plot_confusion_matrix​(​y_test​,​y_train​, ​y_train_prob​,
y_test_prob​,​thresholds​, ​classes​,
 ​cmap​=plt.cm.Blues):
 fig, ax = plt.subplots(​len​(thresholds),​2​, figsize = (​10​,​10​))

 ​for​ idx, thresh ​in​ ​enumerate​(thresholds):
 y_test_predict = np.where(y_test_prob >= thresh, ​1​, ​0​)
 y_train_predict = np.where(y_train_prob >= thresh, ​1​, ​0​)
 train_cm = confusion_matrix(y_train, y_train_predict)

 test_cm = confusion_matrix(y_test, y_test_predict)

 ​#test confusion
 ax[idx, ​0​].imshow(test_cm, cmap=plt.cm.Blues)

 ax[idx, ​0​].set_title(​f​'Test: Confusion Matrix ​|​ Threshold:
{thresh}​'​)

 ax[idx, ​0​].set_ylabel(​'True label'​)
 ax[idx, ​0​].set_xlabel(​'Predicted label'​)

 class_names = classes

 tick_marks = np.arange(​len​(class_names))
 ax[idx, ​0​].set_xticks(tick_marks)
 ax[idx,​0​].set_xticklabels(class_names)
 ax[idx, ​0​].set_yticks(tick_marks)
 ax[idx, ​0​].set_yticklabels(class_names)

 th = test_cm.​max​() / ​2​.

 ​for​ i, j ​in​ itertools.product(​range​(test_cm.shape[​0​]),
range​(test_cm.shape[​1​])):
 ax[idx, ​0​].text(j, i, ​f​'​{test_cm[i, j]}​'​,​# |
{int(round(test_cm[i,j]/test_cm.ravel().sum(),5)*100)}%',

 horizontalalignment=​'center'​,
 color=​'white'​ ​if​ test_cm[i, j] > th ​else​ ​'black'​)
 ax[idx, ​0​].set_ylim([​-.5​,​1.5​])

 ​#TRAIN CONFUSION
 ax[idx, ​1​].imshow(train_cm, cmap=plt.cm.Blues)

 ax[idx, ​1​].set_title(​f​'Train: Confusion Matrix ​|​ Threshold:
{thresh}​'​)
 ax[idx, ​1​].set_ylabel(​'True label'​)
 ax[idx, ​1​].set_xlabel(​'Predicted label'​)

 class_names = classes

 tick_marks = np.arange(​len​(class_names))
 ax[idx, ​1​].set_xticks(tick_marks)
 ax[idx,​1​].set_xticklabels(class_names)
 ax[idx, ​1​].set_yticks(tick_marks)
 ax[idx, ​1​].set_yticklabels(class_names)

 th = train_cm.​max​() / ​2​.

 ​for​ i, j ​in​ itertools.product(​range​(train_cm.shape[​0​]),
range​(train_cm.shape[​1​])):

 ax[idx, ​1​].text(j, i, ​f​'​{train_cm[i, j]}​'​,​# |
{int(round(train_cm[i,j]/train_cm.ravel().sum(),5)*100)}%',

 horizontalalignment=​'center'​,
 color=​'white'​ ​if​ train_cm[i, j] > th ​else​ ​'black'​)
 ax[idx, ​1​].set_ylim([​-.5​,​1.5​])
 plt.tight_layout()

 plt.show()

plot_confusion_matrix(y_train = y_train, y_test = y_test, y_train_prob =

stacked_prediction(members, stacked_model, x_train),

 y_test_prob = yhat, classes = [​'Normal'​,
'NonNormal'​], thresholds = [​.2​, ​.5​,​.6​])

6.9. PneumoStack Evaluation and Performance Visualization for Three-Category

Classification

from​ numpy ​import​ argmax
y_pred = normal_model1.predict(x_train)

y_test.columns = [​0​, ​1​, ​2​]
y_test.idxmax(axis=​1​)
y_pred.shape

a = y_test.idxmax(axis=​1​)
b = argmax(y_pred, axis=​1​)

import​ keras
from​ keras.models ​import​ load_model

def​ ​load_all_models​(​n_models​):
 all_models = list()

 ​for​ i ​in​ ​range​(n_models):
 ​# define filename for this ensemble
 filename = ​'models/model_'​ + str(i + ​1​) + ​'.h5'
 ​# load model from file
 model = load_model(filename)

 ​# add to list of members
 all_models.append(model)

 ​print​(​'>loaded %s'​ % filename)
 ​return​ all_models

n_members = ​3
members = load_all_models(n_members)

print​(​'Loaded %d models'​ % ​len​(members))

from​ sklearn.metrics ​import​ accuracy_score

yhat = stacked_prediction(members, stacked_model, x_test)

print​(​'test'​, y_test)
print​(​'hat'​, yhat)
yhat = np.rint(yhat)

#yhat = argmax(yhat, axis=1)

acc = accuracy_score(y_test, yhat)

print​(​'Stacked Test Accuracy: %.3f'​ % acc)

train_loss = history.history[​'loss'​]
train_acc = history.history[​'accuracy'​]
test_loss = history.history[​'val_loss'​]
test_acc = history.history[​'val_accuracy'​]
epochs = [i ​for​ i ​in​ ​range​(​1​, ​len​(test_acc)+​1​)]

fig, ax = plt.subplots(​1​,​2​, figsize = (​15​,​5​))
ax[​0​].plot(epochs, train_loss, label = ​'Train Loss'​)
ax[​0​].plot(epochs, test_loss, label = ​'Test Loss'​)
ax[​0​].set_title(​'Train/Test Loss'​)
ax[​0​].set_xlabel(​'Epochs'​)
ax[​0​].set_ylabel(​'Loss'​)
ax[​0​].legend()

ax[​1​].plot(epochs, train_acc, label = ​'Train Accuracy'​)
ax[​1​].plot(epochs, test_acc, label = ​'Test Accuracy'​)
ax[​1​].set_title(​'Train/Test Accuracy'​)
ax[​1​].set_xlabel(​'Epochs'​)
ax[​1​].set_ylabel(​'Loss'​)
ax[​1​].legend()

from​ sklearn.metrics ​import​ multilabel_confusion_matrix
from​ numpy ​import​ argmax
confusion_matrix(y_test.idxmax(axis=1).tolist(), argmax(yhat, axis = 1),

labels=['type_Normal', 'type_COVID-19', 'type_virus', 'type_Bacterial'])

cm = confusion_matrix(y_test.idxmax(axis=​1​).tolist(), argmax(yhat, axis =
1​))

def​ ​plot_confusion_matrix​(​cm​, ​classes​,
 ​normalize​=​False​,
 ​title​=​'Confusion matrix'​,
 ​cmap​=plt.cm.Blues):
 ​"""
 This function prints and plots the confusion matrix.

 Normalization can be applied by setting `normalize=True`.

 """

 ​import​ itertools
 ​if​ normalize:
 cm = cm.astype(​'float'​) / cm.​sum​(axis=​1​)[:, np.newaxis]
 ​print​(​"Normalized confusion matrix"​)
 ​else​:
 ​print​(​'Confusion matrix, without normalization'​)

 ​print​(cm)
 plt.figure(dpi: ​400​, figsize: [​100​,​100​])
 plt.imshow(cm, interpolation=​'nearest'​, cmap=cmap)
 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(​len​(classes))
 plt.xticks(tick_marks, classes, rotation=​45​)
 plt.yticks(tick_marks, classes)

 fmt = ​'.2f'​ ​if​ normalize ​else​ ​'d'
 thresh = cm.​max​() / ​2​.
 ​for​ i, j ​in​ itertools.product(​range​(cm.shape[​0​]), ​range​(cm.shape[​1​])):
 plt.text(j, i, ​format​(cm[i, j], fmt),
 horizontalalignment=​"center"​,
 color=​"white"​ ​if​ cm[i, j] > thresh ​else​ ​"black"​)

 plt.ylabel(​'True label'​)
 plt.xlabel(​'Predicted label'​)
 plt.tight_layout()

plot_confusion_matrix(cm, classes = [​'type_Normal'​, ​'type_COVID-19'​,
'type_tertiary'​], normalize = ​False​, title = ​'Three-class Confusion
Matrix'​, cmap=plt.cm.Blues)

recall = np.diag(cm) / np.​sum​(cm, axis = ​1​)
precision = np.diag(cm) / np.​sum​(cm, axis = ​0​)
recall = np.mean(recall)

precision = np.mean(precision)

pd.DataFrame({​'Precision'​: ​round​(precision, ​3​), ​'Recall'​: ​round​(recall,
3​), ​'Accuracy'​:​round​(acc, ​3​)}, index = [​0​])

7. References

1. Pneumonia. (2019). Retrieved 12 February 2021, from

https://www.who.int/news-room/fact-sheets/detail/pneumonia

2. Pneumonia | NHLBI, NIH. (2021). Retrieved 12 February 2021, from

https://www.nhlbi.nih.gov/health-topics/pneumonia

3. A. Ghaderi and V. Athitsos, "Selective unsupervised feature learning with Convolutional

Neural Network (S-CNN)," ​2016 23rd International Conference on Pattern Recognition

(ICPR)​, Cancun, 2016, pp. 2486-2490, doi: 10.1109/ICPR.2016.7900009.

4. Bai, H., Hsieh, B., Xiong, Z., Halsey, K., Choi, J., & Tran, T. et al. (2020). Performance

of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at

Chest CT. ​Radiology​, ​296​(2), E46-E54. doi: 10.1148/radiol.2020200823

5. Saha, S. (2021). ​A Comprehensive Guide to Convolutional Neural Networks — the ELI5

way​. Towards Data Science. Retrieved 12 February 2021, from

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks

-the-eli5-way-3bd2b1164

6. Zhang, J. (1999). Developing robust non-linear models through bootstrap aggregated

neural networks. Neurocomputing, 25(1-3), 93-113. doi:

10.1016/s0925-2312(99)00054-5

7. Ensemble Transfer Learning Framework for Vessel Size Estimation from 2D Images -

Scientific Figure on ResearchGate. Available from:

https://www.researchgate.net/figure/Ensemble-transfer-learning-using-pretrained-CNN-m

odel-initialized-with-weights-trained-on_fig4_333619654 [accessed 28 Feb, 2021]

8. Brownlee, J. (2017). A Gentle Introduction to Transfer Learning for Deep Learning.

https://www.who.int/news-room/fact-sheets/detail/pneumonia
https://www.nhlbi.nih.gov/health-topics/pneumonia
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164

Retrieved 28 February 2021, from

https://machinelearningmastery.com/transfer-learning-for-deep-learning/

9. Wolpert, D. (1992). Stacked generalization. ​Neural Networks​, ​5​(2), 241-259. doi:

10.1016/s0893-6080(05)80023-1

10. Detecting Behavioral Microsleeps from EEG Power Spectra - Scientific Figure on

ResearchGate. Available from:

https://www.researchgate.net/figure/Schematic-diagram-of-stacked-generalization_fig2_5

898833 [accessed 28 Feb, 2021]

11. Cohen, Joseph, Paul Morrison, and Lan Dao. "COVID-19 Image Data Collection:

Prospective Predictions Are The Future " ​arXiv 2006 11988 ​(2021): n. pag. Web 25 Feb

2021

12. Chollet, F. (2016). Xception: Deep Learning with Depthwise Separable Convolutions.

Retrieved 31 January 2021, from ​https://arxiv.org/abs/1610.02357

13. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image

Recognition. Retrieved 31 January 2021, from https://arxiv.org/abs/1512.03385

14. Alemi. Alex. (2021). Improving Inception and Image Classification in TensorFlow.

Retrieved 28 February 2021, from

https://ai.googleblog.com/2016/08/improving-inception-and-image.html

15. ImageNet Winning CNN Architectures (ILSVRC) | Data Science and Machine Learning.

(2021). Retrieved 28 February 2021, from

https://www.kaggle.com/getting-started/149448

16. Wang, L., Lin, Z.Q. & Wong, A. COVID-Net: a tailored deep convolutional neural

network design for detection of COVID-19 cases from chest X-ray images. ​Sci Rep ​10,

https://machinelearningmastery.com/transfer-learning-for-deep-learning/
https://arxiv.org/abs/1610.02357
https://ai.googleblog.com/2016/08/improving-inception-and-image.html

19549 (2020). ​https://doi.org/10.1038/s41598-020-76550-z

17. Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: automatic detection from

X-ray images utilizing transfer learning with convolutional neural networks. ​Physical and

engineering sciences in medicine,​ 43(2), 635–640.

https://doi.org/10.1007/s13246-020-00865-4

18. Umer, M., Ashraf, I., Ullah, S. et al. COVINet: a convolutional neural network approach

for predicting COVID-19 from chest X-ray images. ​J Ambient Intell Human Comput

(2021). ​https://doi.org/10.1007/s12652-021-02917-3

19. Nishio, M., Noguchi, S., Matsuo, H., & Murakami, T. (2020). Automatic classification

between COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy on chest

X-ray image: combination of data augmentation methods. ​Scientific Reports​, ​10​(1). doi:

10.1038/s41598-020-74539-2

20. Singh D, Kumar V, Yadav V, and Kaur M. Deep Convolutional Neural Networks based

Classification model for COVID-19 Infected Patients using Chest Xray Images.

International Journal of Pattern Recognition and Artificial Intelligence​,

https://doi.org/10.1142/S0218001421510046, 2020.

21. J. Zhang et al., "Viral Pneumonia Screening on Chest X-rays Using Confidence-Aware

Anomaly Detection," in ​IEEE Transactions on Medical Imaging​, doi:

10.1109/TMI.2020.3040950.

22. Sahinbas K, and Catak FO. Transfer Learning Based Convolutional Neural Network for

COVID-19 Detection with X-Ray Images.

https://www.ozgurcatak.org/files/papers/covid19-deep-learning.pdf, 2020

23. Jamil M, and Hussain I. Automatic Detection of COVID-19 Infection from Chest X-ray

https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1007/s13246-020-00865-4
https://doi.org/10.1007/s12652-021-02917-3

using Deep Learning. medRxiv, https://doi.org/10.1101/2020.05.10.20097063, 2020.

24. Narin A, Kaya C, and Pamuk Z. Automatic Detection of Coronavirus Disease

(COVID19) Using X-ray Images and Deep Convolutional Neural Networks.

arXiv:2003.10849v1, 2020

25. Osterburg, Stephen. “Implementation of Xception Model.” ​Coding​,

stephan-osterburg.gitbook.io/coding/coding/ml-dl/tensorfow/ch3-xception/implementatio

n-of-xception-model.

26. Aguas, Kenneth. (2020). A guide to transfer learning with Keras using ResNet50.

Retrieved 5 February 2021, from

https://medium.com/@kenneth.ca95/a-guide-to-transfer-learning-with-keras-using-resnet

50-a81a4a28084b

27. Brownlee, J. (2018). Stacking Ensemble for Deep Learning Neural Networks in Python.

Retrieved 5 February 2021, from

https://machinelearningmastery.com/stacking-ensemble-for-deep-learning-neural-networ

ks/

28. What Is Coronavirus?. (2021). Retrieved 6 March 2021, from

https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus

29. RT-PCR Testing. (2021). Retrieved 6 March 2021, from

https://www.idsociety.org/covid-19-real-time-learning-network/diagnostics/RT-pcr-testin

g/

30. Rousan, L.A., Elobeid, E., Karrar, M. ​et al.​ Chest x-ray findings and temporal lung

changes in patients with COVID-19 pneumonia. ​BMC Pulm Med​ 20, 245 (2020).

https://doi.org/10.1186/s12890-020-01286-5

https://medium.com/@kenneth.ca95/a-guide-to-transfer-learning-with-keras-using-resnet50-a81a4a28084b
https://medium.com/@kenneth.ca95/a-guide-to-transfer-learning-with-keras-using-resnet50-a81a4a28084b
https://machinelearningmastery.com/stacking-ensemble-for-deep-learning-neural-networks/
https://machinelearningmastery.com/stacking-ensemble-for-deep-learning-neural-networks/
https://doi.org/10.1186/s12890-020-01286-5

31. Jacobi, A., Chung, M., Bernheim, A., & Eber, C. (2020). Portable chest X-ray in

coronavirus disease-19 (COVID-19): A pictorial review. ​Clinical Imaging​, ​64​, 35-42.

doi: 10.1016/j.clinimag.2020.04.001

32. Gianchandani, N., Jaiswal, A., Singh, D. ​et al.​ Rapid COVID-19 diagnosis using

ensemble deep transfer learning models from chest radiographic images. ​J Ambient Intell

Human Comput​ (2020). ​https://doi.org/10.1007/s12652-020-02669-6

33. H. Ko, H. Ha, H. Cho, K. Seo and J. Lee, "Pneumonia Detection with Weighted Voting

Ensemble of CNN Models," ​2019 2nd International Conference on Artificial Intelligence

and Big Data (ICAIBD)​, Chengdu, China, 2019, pp. 306-310, doi:

10.1109/ICAIBD.2019.8837042.

34. Shorten, C., Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep

Learning. ​J Big Data​ 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0

https://doi.org/10.1007/s12652-020-02669-6

