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Motivation

Improving Diagnostic Accuracy and Efficiency with Automated Diagnostic Systems

➢ Pneumonia accounts for 15% of all deaths of children under 5 years old - single largest infectious cause of death in children worldwide [1]

➢ Diagnosed with chest X-ray (CXR) analysis (gold standard), along with pulse oximetry, blood tests, physical exam, and medical history evaluation 

[2]

➢ Automated diagnosis methods can extract characteristic features of the disease on the CXR scan such as lobar and lobular consolidation, 

interstitial opacities, and ground glass opacities, minimizing false predictions from human intervention.

The Need to Enhance Current Diagnostic Methods of Pneumonia and COVID-19

➢ Convolutional Neural Networks (CNNs) have shown unsurpassed success in image classification due to its capabilities of automated 

unsupervised feature extraction and model preservation with parameter reduction [3]

➢ For all chest CT scans (n = 424), the accuracy of the two radiologists from China in differentiating COVID-19 from non-COVID-19 viral 

pneumonia was 80% (338 of 424) and 60% (255 of 424) [4], emphasizing the need for AI applications in medical image analysis 

➢ Recent reports have revealed that RT-PCR has a sensitivity as low as 60%–71% for helping detect COVID-19, while CXRs have a sensitivity of 

69% [4], presenting the possibility for CXR analysis rectifying false negative findings in RT-PCR in COVID-19 diagnosis

➢ Automated diagnosis can reduce child mortality rates in regions where pneumonia is most prevalent - South Asia and sub-Saharan Africa [1] - in 

the event that trained radiologists are limited

➢ Automating CXR analysis may expedite diagnosis in improving both accuracy and efficiency, allowing treatment to be prescribed sooner



Relevant Work

In contrast to other ensembling methods and the use of individual transfer learning models, the aim of this study is to present a 

stacked CNN meta-learner of transfer learning CNNs with stacked generalization in effort to achieve higher performance than any one of 

its constituent classifiers and existing individual models in binary and multiclass pneumonia CXR classification. 

Aim

➢ Wang et al. [16] - COVID-Net. Tailored CNN with PEPX 

design pattern for three-class classification

➢ Apostolopoulos et al. [17] - VGG-19 as base model for 

three-class classification

➢ Umer et al. [18] - COVINet. Sequential CNN approach for 

three-class classification

➢ Nishio et al. [19] - VGG-16 for three-class classification 

with combined data augmentation methods

➢ Singh et al. [20] - MADE-based CNN for binary 

classification

➢ Sahinbas and Catak - ResNet, DenseNet, InceptionV3 

transfer learning approach for binary classification

Summary of Current Research:
➢ Individual transfer learning models and ensembling by methods 

such as bootstrap aggregation and weighted voting have been 

explored

➢ Stacking has also been done, but with the same model, unable to 

reap the benefits of multiple architectures

○ Meta-learner is also based on logistic regression or other 

algorithms. Using a CNN may result in higher 

performance due to its state-of-the-art performance in 

image classification



Introduction (cont.): Transfer Learning

➢ Machine learning method where a model developed for a task is reused as the starting point for a model on a 

second task [6

➢ Deep learning model pre-trained on the ImageNet 1000-class classification competition with 1,000,000 

images, optimal for the use with a small dataset to maximize accuracy [6

➢ Early layers - CNN features are generic, later layers - dataset-specific → finetune model [6

➢ Three benefits: higher start, higher slope, higher asymptote [8

Figure 3. Ensemble transfer learning using pretrained CNN model 
initialized with weights trained on ImageNet 7 Figure 4. The benefits of transfer learning 8



Introduction (cont.) Ensembling via Stacked Generalization 

➢ Harness the capabilities of a range of well-performing models on a classification task → make predictions that have 

better performance than any single model in the ensemble [9

➢ Stacked generalization: meta-model is trained on the predictions made by base models on out-of-sample data [9

○ Level-0 Models Base-Models): Models fit on the training data and whose predictions are compiled.

○ Level-1 Model Meta-Model): Model that learns how to best combine the predictions of the base models.

➢ Three base models chosen: Xception, InceptionResNetV2, ResNet50 after testing multiple models

Figure 5. Schematic diagram of stacked generalization 10



Constituent Models of Stacked Ensemble

Xception

➢ Modified depthwise separable 

convolution [10

○ Pointwise convolution with 

depthwise convolution

➢ Outperforms VGGNet, ResNet, and 

Inception-v3 in ImageNet with 

94.5% accuracy [15

ResNet50

➢ Skip-wise connections [13

○ Train extremely deep 

neural networks with 

50+layers successfully

➢ Winner of ImageNet 2015 with 93% 

accuracy [15

InceptionResNetV2

➢ Residual inception blocks [14

○ avoids degradation 

problem and reduces the 

training time

➢ 94.6% performance on ImageNet, 

outperformed Inception V3 and 

ResNet152 15

Figure 8. Depthwise separable convolution 12 Figure 9. ResNet50 Architecture 13 Figure 10. InceptionResNetV2 
Architecture 14 



Proposed Stacked Model

Meta-model 

➢ Trained with stacked dataset -> predictions of constituent 

models

➢ Flattened inputs into one vector with Flattening layer

➢ Added Dense layer with ReLU activation

➢ Binary classification

○ Dense layer with sigmoid activation

○ Compile with binary cross-entropy loss function 

defined below:
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Figure 11. Schematic Diagram of Proposed Method

➢ Multiclass classification

○ Dense layer with softmax activation

○ Compile with categorical cross-entropy loss 

function defined below:



Dataset 

➢ Dataset

○ 5829 X-ray images collected at 

Guangzhou Women and Children's 

Medical Center [11

○ X-ray images of the fungal 

Pneumocystis pneumonia and lipoid 

pneumonia were removed for this study

Normal Viral Bacterial COVID-19
Figure 7. Data samples

Table 1. Dataset Distribution



Methods

1. Dataset was selected and preprocessed with the splitting of 

training and testing data, class stratification, and augmentation

2. Transfer learning models (Xception, InceptionResNetV2, 

ResNet50 were constructed, fine-tuned via layer freezing 

iteration, compiled with binary/categorical cross entropy and 

ADAM optimization

3. Models were trained on training data

4. Model evaluation

4.1. Binary classification: F1, ROCAUC, accuracy 

performance metrics were evaluated

4.2. Multiclass classification: precision, recall, accuracy 

performance metrics were evaluated

5. CNN meta-learner and stacked dataset consisting of the 

predictions of constituent models were constructed

6. Meta-learner was trained on stacked dataset

7. Model was evaluated with out-of-sample data. Refer to Step 3.

8. Results were analyzed.
Figure 6. 9 images with applied data augmentation transformations: 
horizontal flip, clockwise rotation by 15 degrees, vertical shift 10%, 
horizontal shift 10%



Results and Discussion: Constituent Model and Stacked 
Model Evaluation 

Table 2. Binary classification between normal and pneumonia results

Table 3. Three-class classification between normal, non-COVID19 
pneumonia, and COVID19 pneumonia results

Figure 12. Three-class Unnormalized Confusion 
Matrix

Figure 13. Two-class Unnormalized Confusion Matrix

Figure 15. Binary Classification ROC CurveFigure 14. Binary Classification Precision-Recall Curve

The stacked model outperformed all constituent classifiers - 

Xception, InceptionResNetV2, and ResNet50 in three-class and binary 

classification with an accuracy of 0.954 and 0.998, respectively.



Conclusion

➢ PneumoStack performed significantly better than any of its constituent 

models, as well as existing models used for pneumonia binary and 

multiclass classification

➢ PneumoStack also performed better than individual models investigated 

in other studies (Table 4

➢ Opens doors to higher performance in automated medical imaging and 

possibly higher performance in applications of computer vision tasks in 

healthcare and medicine

➢ Limitations:

○ Trained on public dataset - clinical data may present varying 

characteristics.

➢ Future work:

○ Use SMOTE to counter class imbalance in dataset

○ Investigate clinical usability by validating on clinical data

○ Apply to other medical imaging tasks ex. MRI analysis for the 

early detection of neurodegenerative diseases

○ Apply to other CNN tasks in medicine ex. differential gene 

analysis and biomarker identification to investigate if superior 

performance projects to various computer vision applications
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