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1. Introduction

The notion of representation stability for a sequence of representations Vn of groups Gn

satisfying certain consistency conditions was introduced in [CF13] to describe the frequent
observation that various representation-theoretic properties stabilized at large n. For ex-
ample, a sequence of ascending topological spaces or groups induces morphisms at the level
of (co)homology; in certain cases, these morphisms are eventually isomoprhisms. Now, the
study of representation stability is a rich area that lends itself to multiple perspectives, in-
cluding those from topology, representation theory, category theory, and algebraic geometry.

A framework using the functor category of FI-modules was developed in [CEF15] to an-
swer questions about representation stability, particularly as it pertains to the symmetric
group, as the endomorphisms in the category FI are precisely the symmetric groups (the
category FI is the category whose objects are finite sets and whose morphisms are injec-
tions). The FI-modules satisfy a certain Noetherian property, which is critical to the utility
of the framework. In particular, it is used to prove an asymptotic structure theorem, which
elucidates the stabilization properties observed.

In [PS17], analogues (VIC-modules, SI-modules) to the functor category of FI-modules
were constructed by replacing the symmetric groups with the general linear groups and the
symplectic groups (over finite rings). Similar Noetherian properties and asymptotic structure
theorems were proven, as well as broad homological stability theorems. Some of these results
are strengthened in [MW20].

The paper [PS17] did not cover the case of the orthogonal groups; it should be a straight-
forward generalization of the symplectic case to prove the same results for the orthogonal
group. Therefore, for a PRIMES project, we would prove these results for the orthogonal
groups and then see if analogues of the techniques in [MW20] also work.
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Remark 1.1. the orthogonal category has not been studied much in detail; in fact it does
not seem to appear anywhere in the literature.

2. Reviewing the General Setting

We use the terminology as in [PS17].

Definition 2.1. Let C be a category and K a ring. Then, a C-module over K is a functor
M : C → ModK. If the ring is clear we shall just use the term “C-module”. A C-module
homomorphism η : M → N between two C-modules M and N is a natural transformation
of functors.

A C-module homomorphism is injective if each component is injective (resp. surjective).
Hence, we can define submodules and quotients; N is a submodule of M is there is an
injective C-module homomorphism N → M and is quotient of M is there is a surjective
C-module homorphism M → N . Hence, the category ModC of C-modules is an abelian
category.

One of the key ingredients in [CEF15] is a notion of Noetherianity property. Recall that
a module of a ring R is Noetherian if every submodule is finitely generated. To generalize
that notion to a C-module, we have the following notions:

Definition 2.2. A C-module M is finitely generated if there exist objects C1, C2, . . . Cn ∈
C and elements xi ∈ M(Ci) for each i such that if N is a submodule of M such that N(Ci)
contains xi, then N = M . Let {xi} be called the generating set of M .

There is an alternate formulation of this definition. Namley, if X ∈ C, let PC,X denote the
representable C-module generated at X i.e. the functor given by PC,X(Y ) = K[HomC(X, Y )]
for all Y ∈ C. By the Yoneda lemma, a C-module homomorphism η : PC,X →M is determined
by a choice of element x ∈ M(X) and letting ηX(1X) = x. Then, a C-module is finitely
generated if and only if it is a quotient of a direct sum of modules of the form PC,X . Indeed, if
M is a finitely generated C-module, thenM is a quotient of the direct sum of the representable
functors attached to the generating set. Similarly, if M is a quotient of this form, then the
elements corresponding to each representable functor will be a generating set of M .

We can now define Noetherianity:

Definition 2.3. A C-module is Noetherian (or locally Noetherian) if every submodule
is finitely generated, in the sense above. The category of C-modules is locally Noetherian
if for all Noetherian rings K, all C-modules are Noetherian.

Lemma 2.4. Let C be a category. The category of C-modules is locally Noetherian if and
only if for all x ∈ C, every submodule of PC,x is finitely generated.

Lemma 2.5. If the category of C-modules is locally Noetherian, and f : C → D is a finite
and essentially surjective functor, then the category of D-modules is locally Noetherian.

3. Reviewing the Symplectic Case

Let R be a finite commutative ring. Recall the category SI(R):
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Definition 3.1. A symplectic module (over R) is a finite-rank free R-module V with a
non-degenerate alternating form ω (i.e. ω(v, v) = 0 for all v ∈ V and the induced map into
the dual of V is an isomorphism). Let us use the notation (V, ω) to denote a symplectic
module. Let SI(R) denote the category whose objects are symplectic modules over R and
whose morphisms are R-linear maps that preserve the form; these are necesarily injective.

Up to isomorphism, there is only one symplectic module for each even rank and none for
odd ranks (c.f. [MH73] for local rings, from which it follows for finite commutative rings):

Proposition 3.2. If (V, ω) is a symplectic module over a finite commutative ring R, then V
has even rank and we can find a basis {v−1, v1, v−2, v2, . . . , v−n, vn} of V such that ω(v−i, vi) =
−ω(vi, v−i) = 1 and ω(vj, vk) = 0, where i, j, k ∈ {−n,−(n− 1), . . . , n− 1, n} and i > 0, j 6=
k. �

Therefore, the category SI is equivalent to the (strict) monoidal category generated by
the object (R2, ωstd) with monoidal operation given by direct sum and unit given by the zero
module with zero form. By extending morphisms to the identity on the complement of the
form, the map (V, ω) 7→ Sp(V ) extends to a functor SI → Grp. The symplectic groups
attached to symplectic modules of a fixed rank are all isomorphic.

In this section, we will review the proof of the following theorem:

Theorem 3.3. The category of SI-modules is locally Noetherian.

Definition 3.4. Let R be a commutative local ring. An R-linear map f : Rm → Rn is
column-adapted if there is a n-element subset Sc(f) = {s1 < s2 < · · · < sn} ⊆ [m] such
that, if we write f as a n×m matrix M with respect to the standard basis, then

• The sith column of M has 1 on the ith position and 0 elsewhere;
• The entries (i, j) where j < si are all non-invertible.

For example, the map f : R5 → R3 defined by the matrix∗ 1 0 • 0
∗ 0 1 • 0
∗ 0 0 ∗ 1


is column adapted, if the entries labeled with ∗ are non-invertible.

In the general case where R is a finite commutative ring, by Proposition 4.3 there exists
an isomorphism

R ∼= R1 × · · · ×Rq

where the Ris are finite commutative local rings. In this case, we say a map f : Rm → Rn

is column-adapted if the induced maps Rm
i → Rn

i are all column-adapted. Also, we say f
is row-adapted if its transpose is column-adapted; define Sr(f) = Sc(f

T ).

Lemma 3.5. The composition of two column-adapted maps is column-adapted. Similarly,
the composition of two row-adapted maps is row-adapted.

The next lemma reveals the importance of column-adapted maps.

Lemma 3.6. Let R be a finite commutative ring, and let f : Rn′ → Rn be a surjection. Then
we can uniquely factor f = f2f1, where f1 : Rn′ → Rn is column-adapted and f2 : Rn → Rn

is an isomorphism.
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Proof. It suffices to deal with local rings.
Existence: We know Rn is free, so it is projective, so there exists g such that fg = 1Rn .

By Cauchy-Binet formula, we have

1 = det fg =
∑
I

det fI det gI

where I ranges over all n-element subsets of [n′], and fI (resp. gI) denotes f restricted
to the columns (resp. rows) in I. Because the (unique) maximal ideal of a local ring
consists of its non-units, there exists I such that det fI is invertible. We take a minimal
such I = {s1, . . . , sn} (in lexicographic order); since det fI is invertible, fI is invertible as a
linear map Rn → Rn, so there exists a h ∈ GL(Rn) such that (hf)I = hfI = 1Rn . If there
exists some invertible element in entry (i, j) in the matrix of hf such that j < si, then the
columns (s1, . . . , si−1, j, si+1, . . . , sn) form a basis of Rn, contradicting the minimality of I.
Therefore, hf is column-adapted, and we could take f2 = h−1, f1 = hf such that f = f2f1.

Uniqueness: Suppose for contradiction that f1 = gf2 where g : Rn → Rn is invertible and
f1, f2 : Rn′ → Rn are column-adapted. Since g is invertible, det g is invertible, so its last
column contains at least one invertible element (recall that the nonunits form an ideal). The
definition of column-adapted maps then implies that maxSc(f2) > maxSc(f1). But we also
have f2 = g−1f1, so maxSc(f1) > Sc(f2), contradiction. �

Definition 3.7. Define the category OSI′(R) by

• objects: pairs (R2n, ω) where ω is a symplectic form on R2n;
• morphisms: symplectic row-adapted linear maps R2n → R2n′

.

Define the category OSI(R) as the full subcategory of OSI′(R) spanned by the objects
(R2n, ωstd) where ωstd is the standard symplectic form (described in Proposition 3.2).

Category Objects Morphisms

SI(R)
(V, ω)

V a finite-rank free R-module
ω a non-degenerate alternating form on V

symplectic R-linear maps

OSI′(R)
(R2n, ω)

ω a non-degenerate alternating form on R2n
symplectic row-adapted

R-linear maps

OSI(R) (R2n, ωstd)
symplectic row-adapted

R-linear maps

Applying Lemma 3.6 to the category SI(R), we obtain the following lemma.

Lemma 3.8. Let f ∈ HomSI(R)((R
2n, ω), (R2n′

, ω′)), then we can uniquely write f = f1f2
such that f2 : (R2n, ω) → (R2n, γ) is an isomorphism for some symplectic form γ on R2n,
and f1 ∈ HomOSI′(R)((R

2n, γ)→ (R2n′
, ω)).

Proof. Transposing, applying Lemma 3.6, then transposing back, we can uniquely write
f = f1f2, where f1 : R2n → R2n′

is row-adapted andd f2 : R2n → R2n is an isomorphism.
We can then uniquely choose γ a symplectic form on R2n so that f1 and f2 are symplectic. �

Our goal is to prove that the category of OSI(R)-modules is locally Noetherian, from
which we could prove the desired conclusion that the category of SI(R)-modules is locally
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Noetherian. To do this, we need the existence of a well partial ordering � on the set

PR(d, ω) =
⊔
n≥0

HomOSI′(R)((R
2d, ω), (R2n, ωstd))

as described in the following lemma.

Lemma 3.9. Fix R, d, ω. There exists a well partial ordering � on PR(d, ω) that can be
extended to a total ordering ≤ such that for f, g ∈ PR(d, ω), mapping to R2n, R2n′

respectively,
satisfying f � g, there exists some φ ∈ HomOSI(R)((R

2n, ωstd), (R2n′
, ωstd)) such that:

• g = φf ;
• For any f1 ∈ HomOSI′(R)((R

2d, ω), (R2n, ωstd)) with f1 < f , φf1 < g.

The construction of the partial order relies on the next lemma:

Lemma 3.10. Fix R, d, ω, f, g, n, n′ as described in Lemma 3.9, and let the rows of g be
r1, . . . , r2n′. Suppose that f can be obtained from g by deleting certain rows rj, j ∈ J =
{2i − 1, 2i} where i ranges over some subset of [n′] such that J ∩ Sr(g) = ∅. Then there
exists φ ∈ HomOSI(R)(R

2n, R2n′
) such that:

• For any h ∈ HomOSI′(R)((R
2d, ω), (R2n, ωstd)) with Sr(h) = Sr(f), φh can be obtained

from h by inserting the row rj in position j for all j ∈ J . In particular, g = φf .
• For any h ∈ HomOSI′(R)((R

2d, ω), (R2n, ωstd)) with Sr(h) < Sr(f) in lex order, then
Sr(φh) < Sr(g) in lex order.

Proof. The desired map φ can be defined by the following 2n′×2n matrix: take a 2(n′−n)×2n
matrix where the kth row r̂k coincides with rk only at positions in Sr(f) and zeros elsewhere,
and shuffle its rows with the rows of a 2n × 2n identity matrix, such that the former rows
occupy row indices in J . It is straightforward to check that the two points actually hold; the
nontrivial part is to prove that φ preserves ωstd, which can be proven by carefully analyzing
the columns of f, g, φ and using the assumptions that f, g are symplectic maps. �

We now prove Lemma 3.9 in the case where R is a local ring. We will use the following
lemma without proof.

Lemma 3.11. Let Σ be a set, then Σ? denotes the set of words in Σ. The set Σ? can be
made into a poset by declaring that s1s2 . . . sn ≤ s′1s

′
2 . . . s

′
m if there is an increasing function

f : [n]→ [m] such that si = s′f(i) for all i. Then Σ? is well-ordered poset.

Proof of Lemma 3.9, local case. Let f, g ∈ PR(d, ω) mapping to 2n, 2n′ respectively, we de-
clare f � g if it can be obtained from g by deleting some set of rows J = {2i− 1, 2i} where
i ranges in a subset of [n′] such that J ∩ Sr(g) = ∅. This is clearly a partial order.

We now prove that (PR(d, ω),�) is isomorphic to a subposet of Σ∗, where we take Σ =
(Rd t {•})× (Rd t {•}), • being a formal symbol. This would imply that � is a well partial
ordering. For f ∈ Hom((R2d, ω), (R2n, ωstd)), let ri represent the ith row of f it i /∈ Sr(f), else
let ri = •. Thus, each pair θi = (r2i−1, r2i) ∈ Σ, and we map f to the word θ1θ2 . . . θn ∈ Σ∗.
Clearly this map is an order-preserving injection, so we conclude that � is a well partial
ordering.

Next, we extend � to a total ordering ≤. Fix an arbitrary total order on R2d, for f 6= g
the order is defined by
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• If n < n′ then f < g;
• Otherwise, if Sr(f) < Sr(g) in lex order, then f < g;
• Otherwise, compare the sequences of rows of f and g in lexicographic order and the

total order on R2d.

This clearly extends �, and the claimed properties follow by taking φ as described by Lemma
3.10. �

This can be extended to the case where R is a finite commutative ring.

Proof of Lemma 3.9, general case. Fix R ∼= R1 × · · · ×Rq, then

Hom((R2n, ω), (R2n′
, ωstd)) =

q∏
i=1

Hom(R2n
i , ω|Ri

), (R2n′

i , ωstd)|Ri
.

Thus, the set PR(d, ω) can be identified with

PR1(d, ω|R1)× · · · × PRq(d, ω|Rq).

It is then easy to define a partial order� and extend it into a total order≤ using lexicographic
order. �

Using this well ordering, we can deduce that:

Theorem 3.12. Let R be a finite commutative ring. For d ≥ 0 and ω a symplectic form on
R2d, any OSI(R)-submodule of the OSI(R)-module

Qd,ω = K[HomOSI′(R)((R
2d, ω),−)]

is finitely generated. As a corollary, the category of OSI(R)-modules is locally Noetherian.

Proof. In view of Lemma 2.4, it suffices to prove that any submodule of Qd,ω is finitely
generated.

Fix d, ω,R,K, so we abbreviate Qd,ω as Q. For an element f ∈ Hom((R2d, ω), R2n), let ef
denote the basis vector in Q(R2n) corresponding to f . For an element x ∈ Q(R2n), define its
initial term init(x) as follows: if f is ≤-maximal such that ef has coefficient αf 6= 0 in x,
init(x) = αfef . Let M be a submodule of Q, we also define init(M) to be a function taking
R2n to the K-module K[init(x) | x ∈M(R2n)].

We claim that if N is a submodule of M and N 6= M , then init(N) 6= init(M). Suppose
for contradiction that init(N) = init(M). Pick y ∈M(R2n)\N(R2n) such that init(y) = αtet
is ≤-minimal. Since init(M) = init(N), there exists z ∈ N(R2n) such that init(z) = init(y),
but then z − y /∈ N(R2n) and init(z − y) is smaller than et, contradiction. This proves the
claim.

Suppose now that there exists a increasing sequence of submodules of Q

M0 (M1 (M2 ( . . . .

The claim implies that init(Mi − 1) 6= init(Mi), so there exists, for every i ≥ 1, some ni ≥ 0
and λiefi ∈ init(Mi)(R

2ni)\init(Mi−1)(R
2ni). Because � is a well partial ordering, there

exists an infinite sequence i0 < i1 < i2 < . . . such that

fi0 � fi1 � fi2 � . . .
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Since K is Noetherian, we can choose m such that λim =
∑m−1

j=0 cjλij for cj ∈ K. For each

0 ≤ j ≤ m− 1, let xj ∈ Mij(R
2nij ) such that init(xj) = λijefij . By Lemma 3.9, there exists

φj ∈ Hom(R2ij , R2im) such that φjfij = fim and for any f ′ij < fij in the same Hom set,
φjfij < fim .

Consider the element X =
∑m−1

j=0 cjφjxj, which belongs to Mim−1(R
im). Then the proper-

ties in Lemma 3.9 implies that init(X) = λimefim /∈Mim−1(R
im), contradiction. �

Finally, we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. By Lemma 2.5 and Theorem 3.12, it suffices to show that the inclusion
functor Φ : OSI(R) → SI(R) is finite (surjectivity is obvious). Fix d, ω, and let M =
PSI(R),(R2d,ω), it suffices to prove that the OSI(R)-module Φ∗ = M ◦ Φ is finitely generated.

Recall that by Theorem 3.12, Qd,γ is finitely generated, for γ a symplectic form on R2d.
If we fix γ and a symplectic isomorphism τ : (R2d, ω) → (R2d, γ), then we get a natural
transformation Qd,γ → Φ∗, and the map⊕

γ

(⊕
τ

Qd,γ

)
→ Φ∗(M)

is surjective by Lemma 3.8. It follows then that Φ∗(M) = M ◦ Φ is finitely generated. �

In review: Lemma 3.10 =⇒ Lemma 3.9 =⇒ Theorem 3.12 =⇒ Theorem 3.3.

4. Orthogonal Forms on Finite Rings

Our goal is to construct an analog of SI for symmetric forms. However, unlike the sym-
plectic case, rank alone does not determine the isometry class of a symmetric form. In this
section, we recall the theory of orthogonal forms on finite rings. We shall always assume
rings are unital and commutative and that 2 is a unit (this is important or otherwise things
can break down).

4.1. Semilocal Rings and Finite Rings. In [PS17], finite rings are considered, and we
shall consider only finite rings as well. However, the literature of orthogonal forms often
deals with semilocal rings, which are more general, so we’ll make a small mention of them
here.

Definition 4.1. A local ring is a ring with a unique maximal ideal. A ring R is semilocal
if R/rad R is Artinian.

For instance, any field is a local ring. There is an equivalent characterization of a semilocal
ring (c.f. [Lam01]):

Proposition 4.2. A ring R is semilocal if and only if it has finitely many maximal ideals. �

Therefore, it is clear that a finite ring is semilocal. Furthermore, if p is a prime ideal in a
finite ring R, then R/p is a finite integral domain and therefore a field. This implies that p
is maximal. Therefore, we have the following result (c.f. [Lam01]):

Proposition 4.3. A finite ring R is the direct product of finite local rings. �
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Therefore, given a finite commutative ring R, we can express it as the product of finite
local rings R =

∏n
i=1Ri. Then, since each Ri is local, there is a unique maximal ideal mi in

each Ri, and this gives a projection map πi : Ri → Ri/mi, which will be a field; in particular,
the product map π =

∏n
i=1 gives a projection map from R to a product of finite fields R/m,

where m =
∏n

i=1 mi.

4.2. Symmetric Bilinear Forms. We now wish to define and characterize symmetric bi-
linear forms.

Definition 4.4. Let R be a semilocal ring, and let V be a finite-rank free R-module. A
bilinear form B : V ×V → R is symmetric or orthogonal if B(v, w) = B(w, v) for all v, w.
The form is said to be non-degenerate if it it induces an isomorphism to the dual space
V ∗ = HomR(V,R). If B is non-degenerate, call the pair (V,B) an orthogonal module. If
(V,BV ) and (W,BW ) are two orthogonal modules, an R-module homomorphism φ : V → W
is called an isometry if BV (v, w) = BW (φ(v), φ(w)) for all v, w ∈ V . It is necessarily
injective.

The classification of orthogonal modules over a finite ring up to bijective isometry is trickier
than the symplectic case. We first have the following diagonalization theorem (c.f. [Bae06]):

Theorem 4.5. Let R be a semilocal ring, and let V be an orthogonal R-module. Then, there
exists a basis of V in which the matrix of B is diagonal and whose diagonal entries are units
in R. �

In other words, we can find a bijective isometry from (V,B) to (RrkV , D), where D is
a diagonal form as in the theorem. However, while this theorem greatly simplifies the
classification problem, it it still redundant (for instance, permuting basis vectors in RrkV

will change D but the resulting module is still isometric). In the case R is a finite field, the
answer is well-known (though a proof is hard to find, c.f. [Gla05]):

Theorem 4.6. Let F be a finite field (of characteristic p > 2), and let (V,B) be an orthogonal
F-module (i.e. a finite-dimensional vector space endowed with a non-degenerate symmetric
bilinear form). Then, there exists a basis of V such that matrix of B is either 1) the identity
matrix, or 2) the diagonal matrix diag(1, . . . , 1, x), where x is any nonsquare in F×, where
different choices of x yield isometric forms.

In other words, there are two isomorphism classes, and the dimension of V and the de-
terminant of B determine the isomorphism class. We can say similar result for a finite local
ring. If R is a finite local ring, let π : R → F denote the projection onto its residue field
F = R/m, where m is the maximal ideal in R.

Theorem 4.7. Let R be a finite local ring (where 2 is a unit), and let (V,B) be an orthogonal
R-module. Then, there exists a basis of V such that matrix of B is either 1) the identity
matrix, or 2) the diagonal matrix diag(1, . . . , 1, x), where x ∈ R is such that π(x) is a
nonsquare in F×, and where different choices of x yield isometric forms.

Proof. First of all, since R is a local ring, m consists of the non-units in R, so for any unit
u ∈ R, the coset u + m consists solely of units. By Theorem 4.5 and applying Theorem
4.6 to the induced orthogonal F-module, we can find a basis {v1, . . . , vn} of V such that
with respect to this basis the form is diagonal, B(vi, vi) = (1 + ti)

−1 where ti ∈ m for each
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1 ≤ i ≤ n− 1 and B satisfies one of the following two cases: either B(vn, vn) = (1 + tn)−1 or
B(vn, vn) = (x + tn)−1, where tn ∈ m and x is a unit in R such that π(x) is a nonsquare in
F×.

Let’s do case 1) first. For each i in {1, . . . , n}, consider the following quadratic equation
in m: (1 + m)2 = 1 + ti, which can be rewritten as m2 + 2m − ti = 0 Since ti ∈ m,
reducing this monic polynomial modulo m gives a monic quadratic equation with two distinct
roots m(m + 2) = 0, one of them being m = 0. By Theorem 3.12 in [GM73], it follows
m2 + 2m− ti = 0 has a root mi in m. Then, in the basis {(1 + m1)v1, . . . , (1 + mn)vn}, we
have B((1 +mi)vi, (1 +mi)vi) = (1 +mi)

2B(vi, vi) = (1 +mi)
2(1 + ti)

−1 = 1 for all i.
For case 2), we can do the same thing for 1 ≤ i ≤ n − 1. For i = n, we consider the

polynomial equation (x + m)2 = x(x + tn), which when reduced modulo m gives m(m +
2π(x)) = 0. The same reasoning gives a root m = mn ∈ m of (x + m)2 = x(x + tn). Then,
we have B((x+mn)vn, (x+mn)vn) = (x+mn)2(x+ tn)−1 = x. This proves the theorem. �

Corollary 4.8. Let R be a finite ring (where 2 is a unit), and write R =
∏n

i=1Ri as the
product of finite local rings. Then, there are 2n isomorphism classes of orthogonal R-modules.

Proof. Such a decomposition exists by Proposition 4.3. Let ei = (0, . . . , 0, 1Ri
, 0, . . . , 0)

(nonzero in the i-th spot) be the central idempotent arising from Ri = eiR, so R =
⊕n

i=1 eiR.
Then, since 1R = e1 + · · · en, it is clear that a bilinear form on R splits as the direct sum of
bilinear forms on Ri. Then, apply Theorem 4.7. �

5. The Category OrI

Fix a finite ring R.

Definition 5.1. Define the category OrI(R) such that the objects are orthogonal R-modules
(V, β), and the morphisms are isometries φ : (V, β) → (W,β′). (Here β belongs to the first
isomorphism class.)

Define the category OOrI′(R) such that the objects are orthogonal R-modules (Rn, β),
and the morphisms are row-adapted isometries φ : (Rn, β) → (Rn′

, β′). (Here β belongs to
the first isomorphism class.)

Define the category OOrI(R) be the full subcategory of OrI(R) spanned by the orthogonal
R-modules (Rn, βstd), where βstd has the identity matrix with respect to the standard basis
on Rn.

Theorem 5.2. Let R be a finite ring. The category of OrI(R)-modules is locally Noetherian.

Theorem 5.3. Let R be a finite ring. The category of OOrI(R)-modules is locally Noether-
ian.

Let Φ : OOrI(R) → OrI(R) be the inclusion functor, and let M = POrI(R),(Rd,β) be the
representable OrI(R)-module. By Lemma 2.5 and Theorem 5.3, it suffices to prove that Φ
is finite, i.e. the OOrI(R)-module sending (Rn, βstd) to

K[HomOrI(R)((R
d, β), (Rn, βstd))]

is finitely generated.

Lemma 5.4. Let f ∈ HomOrI(R)((R
n, β), (Rn′

, β′)), then we can uniquely write f = f1f2
such that f2 : (Rn, β)→ (Rn, γ) is an isomorphism for some symmetric form γ on R2n, and
f1 ∈ HomOOrI′(R)((R

n, γ)→ (Rn′
, β′)).
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Proof. Transposing, applying Lemma 3.6, then transposing back, we can uniquely write
f = f1f2, where f1 : Rn → Rn′

is row-adapted and f2 : Rn → Rn is an isomorphism. We
can then uniquely choose γ a symmetric form on Rn so that f1 and f2 are isometries. �

Fixing a symmetric form γ on Rd and an isomorphism τ ∈ IsoSI(R)((R
d, β), (Rd, γ)), we

get a natural transformation between OOrI(R)-modules Qd,γ and Φ∗: at each (Rn, βstd), let

K[HomOOrI′((R
d, γ), (Rn, βstd))]→ K[HomOrI((R

d, β), (Rn, βstd))]

φ 7→ φ ◦ τ
Thus, we have the following map ⊕

γ

⊕
τ

Qd,γ → Φ∗.

which is surjective because of Lemma 5.4. Because eachQd,γ is finitely generated, we conclude
that Φ∗ is finitely generated as well.

It remains to prove Theorem 5.3, which can be proven by adapting the proof of Theorems
3.12 and 3.9 to the OrI case. Namely,

Lemma 5.5. Fix R, d, ω. There exists a well partial ordering � on PR(d, ω) that can be
extended to a total ordering ≤ such that for f, g ∈ PR(d, ω), mapping to R2n, R2n′

respectively,
satisfying f � g, there exists some φ ∈ HomOSI(R)((R

2n, ωstd), (R2n′
, ωstd)) such that:

• g = φf ;
• For any f1 ∈ HomOSI′(R)((R

2d, ω), (R2n, ωstd)) with f1 < f , φf1 < g.

Lemma 5.6. Fix R, d, β, f, g, n, n′ as described in Lemma 3.9, and let the rows of g be
r1, . . . , r2n′. Suppose that f can be obtained from g by deleting certain rows rj, j ∈ J =
{2i − 1, 2i} where i ranges over some subset of [n′] such that J ∩ Sr(g) = ∅. Then there
exists φ ∈ HomOSI(R)(R

2n, R2n′
) such that:

• For any h ∈ HomOSI′(R)((R
2d, ω), (R2n, ωstd)) with Sr(h) = Sr(f), φh can be obtained

from h by inserting the row rj in position j for all j ∈ J . In particular, g = φf .
• For any h ∈ HomOSI′(R)((R

2d, ω), (R2n, ωstd)) with Sr(h) < Sr(f) in lex order, then
Sr(φh) < Sr(g) in lex order.

Proof. The desired map φ can be defined by the following 2n′×2n matrix: take a 2(n′−n)×2n
matrix where the kth row r̂k coincides with rk only at positions in Sr(f) and zeros elsewhere,
and shuffle its rows with the rows of a 2n × 2n identity matrix, such that the former rows
occupy row indices in J . It is straightforward to check that the two points actually hold; the
nontrivial part is to prove that φ preserves ωstd, which can be proven by carefully analyzing
the columns of f, g, φ and using the assumptions that f, g are symplectic maps. �
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