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Abstract

Recombinant expression underpins the synthesis of crucial recombinant proteins, such as vac-
cines and pharmaceuticals that combat diseases. In recombinant expression, host organisms
such as E. coli express foreign genes to produce the corresponding proteins. Codon opti-
mization is the technique of selecting specific codons to maximize protein production, which
can amplify expression hundreds of times by utilizing differences in frequency between syn-
onymous codons. Effective codon optimization can save millions of lives by enabling timely
and low-cost development of vaccines and pharmaceuticals, especially during outbreaks such
as the COVID-19 pandemic that require rapid therapeutic design to fight disease. Most
optimization algorithms, however, replace almost every codon with its most frequent alter-
native, causing cell stress and protein misfolding by ignoring the significance of rare codons.
Since evolutionary pressures have tuned high-expression genes for both efficiency and safety,
neural networks can address the drawbacks of common optimization techniques by emu-
lating highly expression natural genes from host organisms. In this research, specialized,
sequence-to-sequence neural networks were developed to learn codon-usage patterns from
genomic DNA. Over 10 million genes were collected for three heterologous hosts, clustered
with distance-based greedy clustering, and filtered according to their global codon adapta-
tion indices (gCAI, a predictor of protein expression based on codon bias) to compile five
thousand high-expression, non-redundant genes for training. Models based on CNN, RNN,
and transformer architectures were trained to predict the genes’ codon sequences from their
amino-acid sequences, and the models’ hyperparameters were tuned over multiple training
rounds. The most successful architecture, the stacked LSTM, significantly increased the
average gCAI of the testing sequences, from 0.600 to 0.949, outperforming gold-standard
approaches based on codon-frequency distributions. Additionally, the GC content of the
optimized sequences was evaluated to ensure the sequences’ safety and efficacy. Analyzing
the features learned by the stacked LSTM revealed that the model could recognize multiple
evolutionary phenomena related to codon usage, such as that rare codons correlate with
hydrophobic protein regions. For confirming the efficacy of the optimized sequences, the
CUT&Tag protein pA-Tn5 was expressed in E. coli to compare an unoptimized sequence
with a sequence optimized by the stacked LSTM. As revealed by staining and gel elec-
trophoresis, the gene optimized by CodOpt achieved significantly higher expression than the
original. These results indicate that codon optimization with deep learning can outperform
traditional solutions to accelerate the timely and low-cost synthesis of vaccines and pharma-
ceuticals. For deploying the models publicly, a web application was built where researchers
can generate optimized sequences for their recombinant proteins, enabling the rapid design
and production of crucial therapeutics.
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1 Background
Recombinant proteins underlie contemporary biotechnology and biomedicine. In biology,
proteins are essential macromolecules with numerous roles, such as maintaining cell struc-
ture, transporting various molecules, and catalyzing biochemical reactions. Although all
living organisms produce proteins naturally, specific proteins can be produced synthetically
in host organisms such as bacteria and fungi. As the primary mechanism for synthetic pro-
tein production, recombinant DNA technology underlies the discovery and development of
medical treatments such as vaccines and pharmaceuticals [1]. Recombinant proteins can
be produced quickly, affordably, and safely and have vital roles in combating diseases [2].
Numerous vaccines and pharmaceuticals produced with recombinant DNA technology have
addressed global health challenges and enabled rapid improvements in human life.

• Recombinant COVID-19 vaccines have been instrumental in mitigating COVID-19
worldwide. The Oxford–AstraZeneca and Novavax COVID-19 vaccines, two of the
most widely distributed vaccines of the pandemic, were developed and produced with
recombinant DNA technology [3]. One year after the introduction of the Oxford–
AstraZeneca vaccine, two billion doses were distributed to over one hundred and seventy
countries, saving millions of lives amid the COVID-19 pandemic [4].

• Recombinant granulocyte colony-stimulating factor (GCSF) has improved treatment
for patients experiencing a variety of cancers. Since chemotherapy can dramatically
reduce levels of white blood cells, which are crucial to human immune systems, re-
combinant GCSF enables cancer patients to recover faster and with fewer infections
[5].

• Recombinant human insulin, an early product of biotechnology, has instrumentally
advanced the mitigation of diabetes [5]. By replacing insulin extracted from cows and
pigs, recombinant human insulin has enabled reliable and flexible treatment for millions
of diabetes patients [6].

• Recombinant flu vaccines have advanced the mitigation of influenza. Recombinant flu
vaccines are far less expensive and faster to produce than egg-based and culture-based
vaccines, as recombinant DNA technology bypasses the specialized requirements of
manufacturing vaccines in eggs and cell cultures [7].

• Recombinant human growth hormone (HGH) has transformed the treatment of growth
hormone deficiency. With recombinant HGH, children who experience this deficiency
can achieve typical growth to avoid dwarfism and related conditions later in life [5].

Since recombinant proteins underlie the production of vaccines and pharmaceuticals, they
are fundamental to mitigating diseases such as cancer, diabetes, and COVID-19. Therefore,
efficiently producing recombinant proteins is essential to global health.
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1.1 Genes and Proteins

Genes are the fundamental blueprints that define the development and operation of every
living organism. Each gene contributes to a particular trait, such as human eye color or
blood type. The transfer of genes from parents to children causes the inheritance of traits
between generations.

1.1.1 DNA

In all living organisms, long molecules of DNA located in the centers of cells define genes.
DNA molecules consist of smaller nitrogenous bases that determine the DNA molecule’s
genes. Each nitrogenous base is either adenine (A), cytosine (C), guanine (G), or thymine
(T). The four bases form complementary bonding pairs: adenine and thymine can bond, and
cytosine and guanine can bond.

Each DNA molecule consists of two strands of nucleotides: the coding strand and the
template strand. The coding strand has a sequence of bases that defines multiple genes,
while the template strand contains the bases complementary to the coding bases. For exam-
ple, suppose that a coding strand includes the sequence "ACAG." Then, the corresponding
template strand must have the complementary sequence "TGTC." Each gene corresponds to
a sequence of bases within a coding strand of DNA. The sequence for each gene instructs the
cells of an organism to produce a specific protein. Proteins are diverse macromolecules that
perform the actions necessary to sustain life. They consist of smaller amino acids, which
have twenty possibilities. The nitrogenous bases in a gene define the sequence of amino acids
in the corresponding protein.

Through the cellular processes of transcription and translation, cells produce proteins
according to the genes defined by their DNA.

1.1.2 Transcription and Translation

In transcription, cells copy a gene from a coding strand of DNA to produce messenger RNA
(mRNA), a single isolated strand of nitrogenous bases. Cells replicate the coding strand
by traversing the template strand and collecting a sequence of complementary bases, which
will match the coding sequence. (Adenine, cytosine, and guanine occur in both DNA and
RNA. Instead of thymine, mRNA contains uracil, a slightly different nitrogenous base.) The
mRNA molecules produced by transcription enable the production of proteins in translation.

Ribosomes, structures found in the cytoplasmic fluid of every cell, facilitate protein pro-
duction using the genetic information in mRNA. Each codon in an mRNA strand, a group of
three consecutive nitrogenous bases, corresponds to one amino acid. As ribosomes traverse
an mRNA strand, they facilitate the binding of transfer RNA (tRNA) molecules to each
codon. Each tRNA molecule carries one amino acid and contains the codon complementary
to the mRNA codon for that amino acid. When a ribosome encounters an mRNA codon,
the corresponding tRNA molecule binds to the mRNA strand at its complementary codon.
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Figure 1: Transcription and translation in a eukaryotic cell [8].

As tRNA molecules bind at a ribosome, their amino acids merge into a developing polypep-
tide chain, a sequence of amino acids that will become a protein. After the amino acid
detaches from the tRNA molecule, the tRNA molecule separates from the mRNA strand.
Then, the ribosome moves to the next codon and continues growing the polypeptide chain.
The polypeptide chain gradually folds into a fully functional protein during and after trans-
lation. Segments of the polypeptide chain fold into secondary structures, which fold into
the final tertiary structure of the protein. These folded proteins may undergo further post-
translational modifications before becoming fully functional.

The production of proteins from a gene—which requires transcription, translation, and
protein folding—is gene expression.

Figure 2: The standard genetic code, which defines the amino acid for each codon [9].
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1.2 Heterologous Expression

Recombinant proteins, including essential vaccines and pharmaceuticals, are produced through
heterologous expression, where a host organism expresses foreign genes introduced through re-
combinant DNA technology. Typical heterologous hosts include bacteria, such as Escherichia
coli ; yeast, such as Saccharomyces cerevisiae; and mammalian cells, such as Chinese ham-
ster ovary (CHO) cells [5]. A key challenge in applying heterologous expression is achieving
consistent, high expression, which reduces the time required to produce proteins and the
resources needed to sustain host cells.

1.2.1 Codon Bias

A key consideration in heterologous expression is the host’s codon bias. During translation,
ribosomes in cells traverse mRNA strands and translate each codon via a complementary
tRNA molecule. With four different nitrogenous bases, sixty-four possible codons occur in
sequences. Three of these codons are "stop codons" that indicate the end of translation,
with rare exceptions. The remaining sixty-one codons each correspond to one amino acid.
Since more codons exist than the twenty possible amino acids, some amino acids are encoded
by multiple codons (synonymous codons).

Figure 3: The codon bias for a collection of Escherichia coli genomes [10].

Synonymous codons appear equivalent because interchanging them does not affect the
sequence of amino acids defined by a gene. However, these synonymous codons have different
frequencies in genomic DNA. This phenomenon of codon bias has been observed in many
organisms [11]. As shown in figure 3, for example, the codons "CTG" and "CTA" both
encode the amino acid leucine. In the genome of Escherichia coli, however, "CTG" occurs
almost fifteen times as often as "CTA" [12].
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In unicellular organisms, the frequency of each codon correlates with the abundance of
the corresponding tRNA molecule [11]. Therefore, the codons used by a gene can affect its
expression level: the translation of a rare codon requires a rare tRNA molecule to bind to
an mRNA strand, increasing translation time and reducing gene expression. In prokaryotic
organisms, genes with high expression levels contain few rare codons [11]. This correlation
demonstrates that replacing rare codons with frequent codons can increase expression levels.

1.2.2 Global Codon Adaptation Index

CAI The codon adaptation index (CAI) of a genetic sequence indicates how closely the se-
quence’s codons match the frequent codons within a host genome [13]. Since frequent codons
correlate with high natural expression, CAI is used extensively to predict the expression of
recombinant genes [11]. CAI is the gold standard among algorithms that model expression
levels according to codon usage.

As defined by Sharp and Li [13], CAI is calculated using a reference set of highly expressed
genes from the host. For any codon c, let f(c) be its number of occurrences in the reference
set, and let A(c) be the set containing its synonymous codons. Then, the relative adaptiveness
or weight of the codon, w(c), is the ratio between its frequency and the highest frequency
among its synonymous codons,

w(c) =
f(c)

max
c′∈A(c)

f(c′)
.

For any sequence s that contains n codons, c1 to cn, the CAI of the sequence is the geometric
mean of its codons’ weights,

CAI(s) = n

√√√√ n∏
i=1

w(ci).

gCAI The global codon adaptation index algorithm (gCAI) addresses drawbacks of the
CAI algorithm. While calculating CAI requires a predetermined reference set of highly
expressed genes, the gCAI algorithm recursively determines a reference set using only a single
sequenced genome from the host organism. Determining a reference set without expression
data is crucial because some recombinant hosts may have no publicly available expression
data for reserachers to determine a CAI reference set explicitly.

The recursive algorithm begins by considering the entire genome as a reference set S1.
Then, for each set Sk, set Sk+1 is determined by calculating the gCAI for all genes and
selecting either the top |Sk|

2
genes or the top |S1|

100
genes, whichever set is larger. The algorithm

converges when Sk+1 = Sk, eventually creating a reference set with |S1|
100

genes, or 1% of
the original genome. (This convergence occurred for all fifteen prokaryotic and eukaryotic
genomes originally tested.)

Additionally, the gCAI algorithm adjusts codon weights to account for codon usage in
eukaryotic organisms. In eukaryotes, there exists a negative correlation between gene length
and codon bias, so rare codons can occur at relatively high frequencies in longer genes. If
a reference set contains multiple long genes, this negative correlation causes unusually high
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CAI weights for rare codons. To address this complication, gCAI codon weights are lowered
for codons that occur only in some reference genes.

Consider some reference set S. For any codon c, let f(c) be its number of occurrences in
the reference set, and let A(c) be the set containing its synonymous codons. Furthermore,
let Sc ⊆ S be the set containing all reference sequences in which c occurs. Then, the weight
of the codon, wg(c), is

wg(c) =
|Sc|
|S|

· f(c)

max
c′∈A(c)

f(c′)
.

For any sequence s that contains n codons, c1 to cn, the gCAI of the sequence is the geometric
mean of its codons’ weights,

gCAI(s) = n

√√√√ n∏
i=1

wg(ci).

1.3 Codon Optimization

When using genetic sequences for heterologous expression, codon optimization enhances pro-
tein production by increasing translational efficiency. Since rare codons act as bottlenecks
during translation, replacing them with frequent codons can alleviate slowdowns in transla-
tion, increasing protein production. (Since frequent codons have greater CAI weights than
rare codons, this replacement increases CAI and thus enhances gene expression.) Among
the sequence-dependent properties that affect heterologous expression, codon usage corre-
lates most closely with protein expression [14]. Therefore, optimizing the codons of genetic
sequences is essential to achieving efficient heterologous expression.

Figure 4: Codon optimization enables improved protein expression [15].
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1.3.1 Standard Techniques

Researchers have developed many algorithms and commercial services for optimizing codon
sequences to improve expression [16]. The most common algorithms for codon optimiza-
tion replace each codon with its most frequent synonymous alternative [16]. Despite the
enhancements offered by codon optimization, these standard techniques ignore the unantic-
ipated consequences of eliminating rare codons.

Standard techniques assume that using frequent codons alone will maximize expression
levels. However, this strategy depletes the corresponding tRNA molecules, generating an
unbalanced tRNA pool [17]. This imbalance induces metabolic stress in the host cells and
inhibits their growth [17]. Therefore, the exclusive use of frequent codons can impede het-
erologous protein production by causing tRNA imbalance and hindering cell growth and
proliferation.

Furthermore, standard techniques assume that interchanging synonymous codons does
not affect the resulting proteins. Although rare codons can slow translation, these slowdowns
are often essential to protein folding [16]. Therefore, interchanging synonymous codons can
induce protein misfolding, impairing protein stability and function [16]. Thus, using only
frequent codons disrupts the creation of functional proteins by ignoring the role of rare
codons in translation.

1.3.2 Impacts of Protein Misfolding on Vaccines and Pharmaceuticals

Standard codon optimization techniques impair the efficient production of functional pro-
teins by inducing metabolic stress and protein misfolding in hosts. These consequences can
damage therapeutic proteins such as vaccines and pharmaceuticals [18]. When patients re-
ceive medication, misfolded recombinant proteins can trigger the human immune system to
produce anti-drug antibodies (ADAs) that impair the efficacy of functional proteins [19].

For example, erythropoietin (EPO) is a natural hormone that stimulates the produc-
tion of red blood cells (RBCs). Recombinant human EPO can address anemia, a disease
where the blood cannot deliver enough oxygen to cells. However, misfolded EPO can trigger
the production of ADAs that neutralize functional EPO, natural or recombinant, hindering
RBC production [19]. Similarly, misfolded proteins for the following pharmaceuticals have
triggered anti-drug antibodies that impair patient treatment [19].

• Recombinant interferon beta for treating the autoimmune disease multiple sclerosis.

• Recombinant megakaryocyte growth and differentiation factor (MGDF) for treating
the blood disease thrombocytopenia.

When using codon optimization, however, researchers may only recognize the conse-
quences of protein misfolding during late-stage clinical trials or after launching a medication
[18]. Therefore, algorithms for codon optimization must increase expression levels while
maintaining the structural and functional integrity of the recombinant proteins produced by
heterologous expression.
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Figure 5: Altering codon sequences can induce misfolding [20].

2 Research Questions and Hypotheses: A Deep Learning
Approach

The field of machine learning (ML) enables computers to create predictions and decisions
after learning from data. Deep learning (DL) extends machine learning with neural networks
(NNs), computational models inspired by the human brain. Deep learning can mitigate the
challenges of codon optimization by understanding the contextual codon usage in genomic
sequences that contribute to both protein expression and protein stability.

• How can deep learning amplify recombinant protein expression many times by emulat-
ing highly expressed genes to optimize codon sequences? Which sequence-to-sequence
model architecture will best improve predicted protein expression?

• By learning evolutionary patterns embedded in high-expression genes and emulating
them, how can deep learning address the drawbacks of common optimization tech-
niques, such as metabolic stress and protein misfolding?

• How can a web application give researchers around the globe access to efficient codon
optimization tools to accelerate vaccine and pharmaceutical development and save
lives?
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Deep-learning models extract features from data at multiple levels of abstraction [21].
Although other artificial intelligence techniques require manual feature engineering, neural
networks extract features directly from data and discover patterns that human analysis
cannot detect [22]. Therefore, neural networks could analyze large datasets of genomic
sequences to learn the contextual usage of different codons. In particular, evolutionary
pressure has tuned natural genomic sequences for the efficient production of stable proteins.
Standard optimization algorithms, however, disregard evolutionary patterns because they
cannot comprehend high-level abstractions [16]. By understanding these abstractions, neural
networks could learn to recognize essential sequence properties that contribute to protein
stability. With this understanding, deep learning can address the drawbacks of standard
optimization techniques, such as metabolic stress and dangerous protein misfolding.

Neural networks are computational models that underpin deep learning and are inspired
by the brain. Each neural network contains neurons, computational units with numerical
values determined by their connections. Neurons occur in successive layers that transform
data from previous layers and send them to subsequent layers. During forward propagation,
a neural network generates predictions for input data by calculating the numerical values
for each layer of neurons. The network calculates the values for each layer according to the
weights of the connections between the layers. (Connections with more weight affect the cal-
culations for a neuron more than those with less weight.) Each layer of the network generates
a more abstract representation of the data until the output layer produces a prediction.

Figure 6: A standard deep neural network, with multiple hidden layers of neurons that are
connected to previous and subsequent layers [23].

Neural networks are trained according to their performance on example data. Training
a neural network requires a dataset containing input and expected output examples. For
example, the widely used MNIST dataset includes images of numbers and a label from zero
to nine for each image [24].

During training, the weights of a neural network receive random initial values. Then, the
network’s predictions for the input examples are compared to the expected outputs. The
difference between the predicted and expected results are measured with a loss function.
The network’s weights are adjusted through a backpropagation algorithm to reduce the loss
function gradually, improving the network’s performance. This adjustment is performed for
every input and expected output within the dataset. After training ends, the network’s
weights, which capture the abstractions learned during training, are saved. With these
weights, the neural network can generate predictions for new data.
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Figure 7: The training of a neural network, where the network generates predictions in
forward propogation, its output is analyzed in backpropogation, and its weights are updated
[25].

Neural network architectures are specific arrangements of the neurons and connections
within a network. Various architectures have been designed to analyze particular data types
and underpin different deep learning subfields, such as computer vision (CV) and natural
language processing (NLP). The techniques used for CV, NLP, and transformer models can
apply to codon optimization.

Computer Vision Convolutional neural networks (CNNs) are applied in computer vision
to analyze images and detect their features.

CNNs analyze images with spatial invariance, as they can discern shapes and features
throughout a picture rather than only one section. This spatial invariance can help optimize
genetic sequences because each amino acid can occur at any location. Therefore, models
that analyze sequences should learn the contextual occurrence of amino acids from training
sequences and apply this understanding to new sequences where those amino acids occur.

Furthermore, successive convolutional layers extract progressively more abstract features
from more expansive areas of an image. This progressive understanding applies to genetic
sequences because amino-acid chains fold into secondary and tertiary structures, and the
codons throughout a chain affect its folding. Therefore, models that analyze sequences
should understand their features at progressively larger scales.

Natural Language Processing Recurrent neural networks (RNNs) apply to natural lan-
guage processing and other sequence analyses, such as predicting stock prices over time.

RNNs use contextual understanding to generate predictions. For example, consider an
RNN that translates English to Spanish. Although an English word may have different
Spanish translations, the model can recognize which translations are incorrect given the
surrounding phrases and sentences. This contextual knowledge applies to the optimization
codon sequences because rare codons occur according to specific contextual requirements.

Unidirectional RNNs use previous sequence data to generate a prediction for each value.
Bidirectional RNNs, however, use both previous and subsequent data. This research com-
pares both unidirectional and bidirectional RNNs for codon optimization. Unlike unidirec-
tional networks, bidirectional networks can analyze the features before and after each amino
acid. However, unidirectional models reflect the biological fact that codon sequences are
translated in one direction. Many sequence properties relate to this unidirectional trans-
lation. For example, rare codons enable co-translational protein folding, which is crucial
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for protein production and begins before an entire polypeptide chain is constructed. Thus,
unidirectional RNNs can identify significant features of a sequence without knowing its later
codons. Therefore, building both unidirectional and bidirectional RNNs offers a valuable
conceptual comparison.

Transformers Transformer models, devised in 2017 by AI researchers at Google, have rev-
olutionized artificial intelligence and sparked exponential growth in the size and capabilities
of preeminent neural networks. Originally developed as an alternative to RNNs, transformers
have gained prominence in all subfields of artificial intelligence, including natural-language
processing and computer vision. Furthermore, transformers underlie groundbreaking sys-
tems such as the famed ChatGPT chatbot developed by OpenAI. Transformers use atten-
tion mechanisms to understand the significance of each element within a sequence. Attention
mechanisms were originally developed to improve the performance of RNN models for long
sequences. However, researchers have found that using attention mechanisms alone, with-
out recurrent layers, can surpass the performance of RNNs with attention mechanisms and
achieve significantly lower training times. Thus, the transformer architecture uses only at-
tention mechanisms and feedforward layers for sequence processing.

Hypotheses With neural networks such as CNNs, RNNs, and transformers, deep learning
can address the drawbacks of standard techniques for codon optimization. Codon optimiza-
tion enables efficient heterologous expression for producing recombinant proteins. However,
traditional optimization techniques cause disruptive protein misfolding and metabolic stress.
In medications, misfolded proteins harm patients by fostering anti-drug antibodies that coun-
teract natural and recombinant proteins. Therefore, novel techniques for codon optimization
must enhance expression without these detrimental consequences.

• By learning to predict the genes for highly expressed natural proteins and applying
this capability to recombinant proteins, deep learning can achieve the same expression
levels as natural highly expressed genes. Furthermore, by avoiding tRNA imbalance
and metabolic stress that damage host cells, neural networks can surpass the expression
levels achieved by common optimization techniques.

• Evolution has embedded information in natural genes that ensures protein stability and
prevents protein misfolding. Standard optimization algorithms, however, disregard this
information because they cannot comprehend high-level abstractions. By emulating
patterns embedded within these genes by evolutionary pressure, deep learning can
address the metabolic stress and protein misfolding that current solutions cause.

• An accessible and simple web application can provide global access to codon optimiza-
tion tools based on deep learning. Since deep learning models are speedy, such a web
application could quickly provide researchers with optimized sequences for different
heterologous hosts. With these sequences, researchers could accelerate their work in
developing and testing new medicines; labs and companies could accelerate the pro-
duction of crucial recombinant proteins that save lives.
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3 Methods
Neural networks for codon optimization were built for three standard heterologous hosts: Es-
cherichia coli, baker’s yeast (Saccharomyces cerevisiae), and Chinese hamster ovary (CHO)
cells (Cricetulus griseus). The models were constructed through a host-independent pipeline
that enables researchers to build similar models for codon optimization with new heterolo-
gous hosts. The pipeline begins with DNA sequences from publicly available genomes of the
host species and performs the following steps to build a neural network.

• Clustering the sequences to remove redundancy between the different genomes for each
host organism and choosing centroid sequences from the clusters.

• Validating the sequences to ensure they have no ambiguous bases, have valid start
codons and stop codons, and are neither predicted nor hypothetical genes.

• Filtering the sequences according to their predicted expression levels (gCAIs) and con-
structing a training dataset of those sequences with gCAIs above the 80th percentile.

• Building and training neural networks to predict the codon sequences in the training
dataset from their amino-acid sequences.

3.1 Datasets

Sequence data from the NCBI Assembly database were used to train and test the deep-
learning models. The NCBI Assembly database includes genetic sequencing data for hun-
dreds of thousands of organisms [26]. The assemblies contain the sequencing data from
experiments performed by researchers and have varying levels of detail and annotation.

For each host species, available assemblies were downloaded from the Assembly database.
Although the database provides complete data from each sequencing experiment, only the
genomic coding sequences were used for training the models, as the models optimize codon
sequences for translation into proteins. Therefore, the coding sequences for each assembly
were downloaded in the FASTA file format.

Escherichia coli, the most extensively studied model organism, had over 190,000 distinct
Assembly entries. Due to the size of the sequence data for these entries, the download
was restricted to the complete genomes available in the NCBI RefSeq database, which the
NCBI curates to have less redundancy than the general Assembly database. This download
consisted of over two thousand genomes with over ten million sequences, still more than all
available data for the other host species.

3.2 Technology

3.2.1 Models

All data analyses were performed with the Python programming language, which has read-
able syntax and extensive libraries for data science and deep learning. Data analysis and
modeling were performed with the Python libraries Biopython (version 1.79), Matplotlib
(version 3.6), and TensorFlow (version 2.10).
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Biopython is a comprehensive library for processing and manipulating various biological
data, such as sequences, sequence annotations, and expression data [27]. Biopython was
used to parse FASTA files, which store genetic sequences and their metadata.

Matplotlib is a library used extensively in data science to visualize and plot data [28].
Using an array of data, Matplotlib can produce various plots, such as violin plots for one-
dimensional distributions and line graphs for two-dimensional relationships. Matplotlib was
used to create violin plots of gCAI distributions and other plots of network performance.

TensorFlow is a comprehensive library for accelerated numerical computations and for
building neural networks [29]. TensorFlow uses the CUDA toolkit to accelerate array com-
putations with graphics processing units (GPUs) that specialize in parallel computation
(performing multiple numerical operations simultaneously). TensorFlow functions and the
Keras API were used to manipulate arrays of sequence data and build neural networks.

3.2.2 Web Application

The web application was developed with the Python programming language and the Jinja
templating engine. The web application was built with the Python libraries Flask (version
2.1.1), SQLAlchemy (version 1.4.46), and WTForms (version 3.0.1).

3.3 Preprocessing Genomic Data

3.3.1 Clustering Sequences

The models were trained using publicly available genomes from multiple organisms for each
host species. Since these genomes contain similar sequences, their data were clustered to
remove redundancy in the dataset. Various tools exist for clustering genetic sequences, such
as VSEARCH, USEARCH, and CD-HIT-EST [30, 31, 32]. VSEARCH was used because of its
efficient implementation and ability to integrate with self-managed computing environments.

VSEARCH was utilized to cluster the Assembly sequences for each host: sequences with
pairwise similarities above 90% were clustered together. The centroid sequences, one from
each cluster, were then stored in a FASTA format with their original metadata. These
centroid sequences formed the basis of the training datasets for the neural networks.

3.3.2 Validating Sequences

After clustering the genomic sequences and retrieving the corresponding centroid sequences,
the centroid sequences were validated before being used to train the deep-learning models.
Any centroid sequence that did not satisfy the following criteria was deemed invalid.

• No ambiguous bases. After genomic sequencing, some nitrogenous bases remain am-
biguous. The Assembly data indicates these ambiguities with specific IUPAC (the
International Union of Pure and Applied Chemistry) codes. For example, the IUPAC
code "R" indicates an ambiguous base that is either adenine (A) or guanine (G). Se-
quences with ambiguities cannot be represented as arrays, so they were deemed invalid.

• No invalid codons. The length of every genetic sequence must be a multiple of three,
as codons contain three bases. Furthermore, every sequence must have a valid start
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codon and stop codon for the host species. Any sequence without an acceptable length
or valid start and stop codons, possibly due to sequencing errors, was deemed invalid.

• Neither a pseudogene nor encoding for a hypothetical protein. Some of the Assembly
sequences had annotations provided by NCBI. These annotations indicated whether
each sequence was a pseudogene (a nonfunctional segment of DNA) or encoded a hypo-
thetical protein (a protein predicted to exist from sequencing alone). Any pseudogene
or hypothetical protein sequence was deemed invalid.

3.3.3 Filtering Sequences

After validation, the sequences for each host were filtered according to their predicted expres-
sion levels to collect a dataset for training the neural networks. The global codon adaptation
index (gCAI) was calculated for each validated sequence to predict its expression level. These
gCAI values were collected and sorted, and the 80th percentile for gCAI for the validated
sequences was calculated. The modeling dataset was constructed with every sequence whose
gCAI was above the 80th percentile. This collection produced a dataset of highly expressed
genes from which the neural networks could learn.

5,000 
genes

5,000 
genes

5,000 
genes

5,000 
genes

5,000 
genes

2,173 Complete Genomes for Escherichia coli
10,854,916 Genes

28,728 Standardized Genes Ordered by gCAI

58,168 Centroid Genes without Redundancy

28,728 Standardized Genes

5,745 Standardized, High-Expression Genes

Distance-based clustering with 
VSEARCH, a sequence-analysis tool

Validating the genes, such as 
checking for valid start codons

Calculating the gCAI weights for the 
sixty-four codons, and determining 

the gCAI of each validated gene

Figure 8: The pipeline for distilling millions of genes into a standardized training dataset.
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3.4 Building and Training Models

With this dataset of highly expressed genes, neural networks of various architectures were
built for codon optimization. Each neural network accepts a sequence of amino acids as
input and outputs the predicted, optimal codon sequence.

The networks train by learning to emulate the highly expressed genes. Evolution has
optimized these genes to both ensure efficient protein production and prevent dangerous
protein misfolding. Therefore, emulating the contextual codon usage of these genes can
enhance heterologous expression without the drawbacks of standard optimization techniques,
such as protein misfolding and metabolic stress. By training to predict codon sequences from
amino-acid sequences, the networks must learn the contextual significance of rare codons to
determine where those rare codons should occur.

Using the amino-acid sequences of recombinant proteins, the networks can then generate
optimized codon sequences that resemble natural, highly expressed genes. Multiple networks
with different architectures were built for systematically comparing their abilities to predict
the codon sequences of highly expressed genes.

3.4.1 Architectures

Each neural network for codon optimization begins with an input layer that accepts an
array of one-hot encoded amino acids. A one-hot encoded array of amino acids is an array
of vectors that contain 20 numbers each. The vector for a given amino acid contains a 1 at
the index (from 1 to 20) for that amino acid and a 0 at every other index.

Each neural network generates logits for the sixty-four possible codons. However, only
some of these codons encode each amino acid, while the others would incorrectly produce
a different protein sequence. Therefore, each neural network includes a restriction layer
that excludes the invalid codons for each amino acid. Although the neural networks learn
the genetic code during training, the output space should be restricted to prevent rare
incorrect substitutions. The restriction layer sets the logit for each invalid codon to the
minimum possible value. (For 32-bit floating-point numbers, this minimum is approximately
−2128 ≈ −3.4 · 1038.) Under the softmax function, which converts logits to probabilities,
these minimized logits become zero, eliminating invalid codons from the output space.

Convolutional Neural Networks A sequence-to-sequence CNN was built for codon op-
timization using convolutions with strides of one. Pooling layers were avoided because the
input sequences have variable lengths, so transposed convolutions would generate an incor-
rectly sized output due to rounding. With multiple convolutions, the neurons in subsequent
layers have larger receptive fields and can capture more sequence features. Inspired by the
UNet architecture [33], the network includes skip-layer connections from earlier convolutional
layers to later ones. These connections reveal the ordering of the initial sequence to the last
layers that build the output. After the hidden layers, the network generates logits for the
sixty-four codons with a final convolution.

Recurrent Neural Networks Multiple RNNs were built for codon optimization, includ-
ing a recurrent neural network (RNN), a gated recurrent unit (GRU) network, and a long
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short-term memory (LSTM) network. Each RNN contains a computational cell that pro-
cesses sequence elements according to its internal weights and has a dynamic hidden state
that stores the memory of the cell. When an RNN cell analyzes a sequence, it merges the
new elements into its previous hidden state. This recurrent cycle allows the cell to remember
significant features over time, a crucial capability for analyzing sequence relationships. For
codon optimization, remembering the surrounding amino acids is essential for determining
the optimal codons, as different codons occur in particular contexts.

Figure 9: The operation of a standard RNN, where the cell processes each element of an
input sequence and maintains an internal state for storing previous information [34].

The long short-term memory (LSTM) and gated recurrent unit (GRU) architectures
extend the standard RNN cell to achieve better memory. Each LSTM cell includes a forget
gate, an input gate, and an output gate. These computational units regulate how data is
incorporated into the state of the cell. When the cell encounters new data, the forget gate
determines whether the previous state is unnecessary, the input gate determines how the cell
state should change, and the output gate determines the output for the new data. Each gate
has internal weights that are trained over time. These gates enable LSTM networks to retain
information when processing long sequences. GRU cells resemble LSTM cells but have fewer
operations, making them less computationally intensive. Each GRU cell has two gates that
update the cell state and choose which information to ignore. Like LSTM networks, GRU
networks can recall information in long sequences better than standard RNNs. This ability
is essential to codon optimization because amino acids far apart can interact heavily during
protein folding.

Both unstacked models (with a single RNN, GRU, or LSTM layer) and stacked models
(with multiple successive layers) were built to compare the three architectures. Stacked
networks involve multiple recurrent cells in sequence, where the outputs of one recurrent
cell are passed to later cells. Although the stacked models require more computation and
time to train, their stacked cells enable them to learn from training data at greater levels of
abstraction. After their recurrent cells, the networks generate logits for the sixty-four codons
with a fully connected layer.
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Sequential Input

The input layer accepts a one-hot 
encoded amino-acid sequence.

Recurrent Layers Post-processing Layers

Linear Transformation

This layer converts the 128-unit vectors 
into logit distributions for the codons.

Output Restriction

Although the network learns the 
genetic code during training, the 

output space is restricted to prevent 
rare incorrect substitutions. This layer 
sets the logit for each invalid codon to 

the minimum 32-bit float value.

Sequential Output with Softmax

This layer converts the restricted logit 
distributions to the final codon 

probability distributions, using the 
softmax activation function.

Five Stacked, 
Sequence-to-Sequence, 
Bidirectional LSTM Cells

Each LSTM cell includes 128 units. 
The stacked cells allow the network 

to identify progressively more 
abstract features from the input.

Understanding these features allows 
the network to select rare codons 

only when necessary. This capability 
ensures maximal protein expression 

without misfolding or cell stress.

Figure 10: The architecture of the stacked LSTM model, including five successive LSTM
cells that abstract progressively more abstract features from the input sequence.

Transformers A sequence-to-sequence transformer was built using a multihead attention
mechanism. The model’s attention block included four concurrent attention heads with sizes
of 1024. Following the attention heads were two convolutional layers, the latter of which
generates the logit distributions for the codons.

3.4.2 Model Training

The training datasets for the host species were randomly divided, with 70% used for training
the neural networks, 15% used for validation, and 15% used for testing. The neural networks
were trained for multiple epochs, and training was stopped manually after the increase
in categorical accuracy per epoch became negligible. The training sequences had varying
lengths, ranging from fifty amino acids to thousands, so the training batches contained one
sequence each. The Adam optimizer was applied with a learning rate between 10−4 and
10−5, depending on the model architecture.
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A model architecture:
CNN, RNN, GRU, LSTM, or Transformer

Tuned, sequence-to-sequence models

5,745 Standardized, High-Expression Genes

4,021 for Training
862 for 

validation
862 for 
testing

Randomly shuffling the data

Training the models and tuning their 
hyperparameters according to validation results

The most performant model
from the CodOpt architectures

Comparing the average gCAI of each 
model's output sequences

Deploying the model 
through a web application

A publicly available system to accelerate the 
development of vaccines and pharmaceuticals

Figure 11: The pipeline for utilizing the highly expressed genes collected for each host
organism to train neural networks for codon optimization.

The categorical cross-entropy (CCE) loss function, which measures the difference between
probability distributions, was used to train the neural networks. CCE quantifies the differ-
ence between two sets of probability distributions. The CodOpt models output one codon
probability distribution for each input amino acid. Using CCE, each output probability
distribution was compared to the target probability distribution for each amino acid, which
contains a 1 for the correct codon and a 0 for the sixty-three incorrect codons.

Let T and O be the target and output tensors for one batch. Each tensor has shape
(I, L, 64), with I input sequences in the batch, L amino acids per input sequence (using
padding if needed), and 64 codon probabilities per amino acid. Then,

CCE(T,O) = − 1

IL

I∑
i=1

L∑
l=1

64∑
n=1

Ti,l,n logOi,l,n.

By reducing the cross entropy, the neural networks were guided to learn the contextual
occurrence of rare codons and achieve confidence in placing frequent codons. Then, the
networks were compared according to the average global codon adaptation index (gCAI) that
they reached. Therefore, the most performant models understood the contextual placement
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of rare codons (reducing cross-entropy) to use frequent codons in other situations (increasing
gCAI).

Configuration The neural-network hyperparameters were tuned during multiple training
experiments to improve performance without increasing network size dramatically. Model
performance was judged using the average cross-entropy loss and global codon adaptation
index (gCAI).

Model Hidden Output Sizes Optimizer and LR Encoding

CNN 16, 32, 64, 32, 16 Adam (10−5) One-Hot

RNN 512 Adam (10−4) One-Hot
Stacked RNN 256, 256, 256, 256, 256 One-Hot

GRU 512 Adam (10−4) One-Hot
Stacked GRU 256, 256, 256, 256, 256 One-Hot

LSTM 256 Adam (10−4) One-Hot
Stacked LSTM 128, 128, 128, 128, 128 One-Hot

Transformer 1024 (Four Attention Heads) Adam (10−5) One-Hot
64 (Convolutional Layer)

Table 1: The final hyperparameter configurations, chosen after multiple training runs.

3.5 Evolutionary Feature Analysis

Feature analysis visualizes the patterns that neural networks have learned during training,
enabling researchers to understand a model’s predictions. These visualizations can reveal
new insights, especially for developing domains such as codon optimization.

After the CodOpt models were tuned and compared, feature analysis was used to confirm
that the models learned to recognize evolutionary phenomena that underlie codon usage in
highly expressed genes. As determined by testing performance, the most successful CodOpt
model was a recurrent neural network. During training, every unit of every recurrent cell
learns to identify specific features and sequence properties from input data.

For understanding the features learned by the most performant model, the output of
every recurrent unit was captured as the model performed prediction on the testing dataset.
The output values were transformed into a sequence of colors for visualization, using a linear
color gradient with red for the lowest negative numbers, gray for zero, and blue for the
highest positive numbers. A single heatmap of these output values was created for each
unit, using a series of HTML span elements to visualize the activations. Each unit plot
depicts the amino acids in the input sequence, with background colors determined by the
color sequence calculated earlier. The output heatmaps were inspected for features learned
by the model.
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3.6 Optimized Recombinant Expression

For validating the CodOpt models experimentally, a recombinant protein was expressed in
Escherichia coli cells, using both an original DNA sequence and a sequence optimized with
CodOpt. Researchers at the Lu Lab in the Columbia University Irving Medical Center
conducted the procedure for this lab trial.

3.6.1 Expression Plasmid Cloning

The DNA sequence encoding the protein A and Tn5 transposase fusion protein (pA-Tn5)
was obtained from a publicly available plasmid map (Addgene #124601). After codon op-
timization with the most performant CodOpt model, the optimized DNA sequence was
synthesized and cloned into the same expression vector using restriction digestion enzymes
NcoI and BamHI. The expression plasmid was verified using gel electrophoresis and Sanger
sequencing.

3.6.2 Recombinant Protein Expression

Recombinant protein expression was performed as previously described [35]. The original and
optimized plasmids expressing pA-Tn5 was transformed into C3013 cells (NEB) according to
manufacturer instructions. Two colonies from each plasmid transformation were inoculated
into 15 mL LB medium overnight in a shaking incubator. 0.5 mM of fresh Isopropyl ß-D-1-
thiogalactopyranoside (IPTG) was added to induce recombinant protein expression, and the
culture was incubated at 37 ◦C on a shaker for 4 hours. After centrifugation at 10,000 rpm
and 4 ◦C for 30 minutes, uninduced and IPTG-induced pellets derived from the bacterial
cultures were resuspended in chilled HEGX Buffer (20 mM HEPES-KOH at pH 7.2, 0.8
M NaCl, 1 mM EDTA, 10% glycerol, 0.2% Triton X-100) including 1× Roche Complete
EDTA-free protease inhibitor tablets. The lysate was sonicated while chilled. The sonicated
lysate was run on SDS-PAGE gel at 150 V for 1 hour. After running, the gel was rinsed
in deionized water and incubated with 20 ml SimplyBlue SafeStain (Thermo Fisher) for 1
hour with gentle agitation. After staining, the gel was rinsed twice with 100 ml of deionized
water each time for 1 hour. A brightfield image was saved using a scanner.

4 Results

4.1 Model Performance and Statistical Analysis

The average gCAI for the testing sequences increased significantly after optimization, demon-
strating that the CodOpt models can substantially enhance protein expression. Before op-
timization, the average gCAI over the testing dataset for Escherichia coli was 0.600. After
many iterations of training and tuning, the average gCAIs achieved by all eight model ar-
chitectures on the testing data were as follows.
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Model Global Codon Adaptation Index

CNN 0.923

RNN 0.928
Stacked RNN 0.915

GRU 0.926
Stacked GRU 0.933

LSTM 0.945
Stacked LSTM 0.949

Transformer 0.941

Table 2: The testing gCAI average achieved by each model architecture trained for Es-
cherichia coli.

Furthermore, the gCAI distributions after optimization, which represent the frequencies
of different gCAI values among the optimized sequences, were as follows.
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Figure 12: The gCAI distributions for the sequences optimized by all eight model archi-
tectures trained for Escherichia coli.
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The most performant model for Escherichia coli, the stacked LSTM network, achieved
an average optimized gCAI of 0.949 over the testing sequences, an improvement of 58%
compared to the original 0.600. By a one-sided Wilcoxon signed-rank test, the gCAIs of the
optimized sequences (µ = 0.949) were significantly greater than the gCAIs of the original
testing sequences (µ = 0.600), with a p-value of 4.14× 10−16.
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Figure 13: The gCAI distributions for the original testing sequences from Escherichia coli
and the sequences optimized by the stacked LSTM.

Furthermore, the stacked LSTM achieved the highest average gCAI for baker’s yeast and
Chinese hamster ovary cells.

Species Original gCAI Optimized gCAI

Escherichia coli 0.600 0.949
Baker’s Yeast 0.723 0.970
CHO Cells 0.524 0.948

Table 3: The original gCAI average over the highly expressed genes for each host species
and the optimized gCAI average after appyling the stacked LSTM model to those genes for
each host species.
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The GC content of a genetic sequence equals the percentage of its bases that are either
guanine or cytosine. For some gene g, let A, C, G, and T be the number of occurrences of
adenine, cytosine, guanine, and thymine within g, respectively. Then,

GC(g) =
G+ C

A+ T +G+ C
× 100%.

Values for GC content below 30% or above 70% can cause the formation of mRNA secondary
structure that inhibits translation, hurting protein production. Therefore, the GC content
was measured for all optimized sequences to ensure that the models did not change drastically
codon frequencies or affect GC content. The models all produced sequences with GC contents
between 30% and 70%, so they do not affect GC content adversely.
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Figure 14: The distributions of GC content for the sequences optimized by all eight model
architectures trained for Escherichia coli.

4.2 Evolutionary Feature Analysis

Feature analysis was used to confirm that the CodOpt models learned to recognize evo-
lutionary phenomena that affect codon usage. To understand the features learned by the
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stacked LSTM for Escherichia coli, the activations of every unit were captured as the model
performed prediction on the testing dataset. Heatmaps of these activations were created and
inspected. These heatmaps demonstrated that the model had learned multiple discernible
evolutionary phenomena that affect rare-codon usage.

4.2.1 Translation Initiation and Termination

In many organisms, rare codons cluster at both the 5’ and 3’ ends (the initial codons and
the final codons) of genetic sequences. Clusters of rare codons that begin genes improve
the efficiency of translation initiation, enhancing protein synthesis overall. Clusters of rare
codons that end genes may provide proteins additional time to fold before being released
from ribosomes. Thus, rare codon clusters that begin and end genes enhance the efficiency
and safety of protein production.

Figure 15: A unit identifying the amino acids toward the beginning of a sequence.

Figure 16: A unit identifying the amino acids toward the end of a sequence.

4.2.2 Kyte–Doolittle Hydropathy

The appearance of rare codons correlates with the Kyte–Doolittle hydropathy (a measure
of hydrophobicity and hydrophilicity) of different protein regions. Rare codons cluster in
hydrophobic areas where folding often must be slowed.

Figure 17: A unit whose values correlate with Kyte–Doolittle hydropathy.

4.2.3 Protein Disorder

Many proteins contain structured regions with uniquely defined three-dimensional arrange-
ments of amino acids under typical conditions. Intrinsically disordered regions, however,
lack fixed, unique structures. Rare codons correspond with intrinsically disordered protein
regions, enhancing overall protein function and conformation.
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Figure 18: A unit whose values correlate with predicted protein disorder.

4.2.4 Transmembrane Proteins

Transmembrane proteins are proteins that span the cell membrane, often to facilitate the
transfer of different substances across the membrane. The insertion of transmembrane pro-
teins into the cell membrane often begins during translation. In genes for transmembrane
proteins, rare codons often cluster in positions 50 to 70 to allow for unhindered cotransla-
tional insertion by temporarily slowing translation.

Figure 19: A unit activated at amino acids 50 to 70 (with some noise from connections
with previous layers) for a transmembrane protein.

4.3 Optimized Recombinant Expression

For validating the stacked LSTM experimentally, a DNA sequence encoding the pA-Tn5
protein was optimized using the stacked LSTM for Escherichia coli. The optimized sequence
was cloned into the same expression plasmid as the original sequence. Both the original
and optimized expression plasmids were transformed into E. coli. After IPTG induction, the
bacteria were lysed, and the protein content was separated by SDS-PAGE gel electrophoresis.

Expression levels for pA-Tn5 were visualized using Coomassie Blue staining. Compared
to two colonies expressing the original plasmid, two colonies expressing the optimized plasmid
had significantly greater recombinant protein expression. Therefore, codon optimization with
CodOpt can significantly improve protein expression, accelerating the production of pA-Tn5
and other recombinant proteins such as vaccines and pharmaceuticals.
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Figure 20: Coomassie Blue staining of SDS-PAGE separated lysates from E. coli cultures
transformed with either original or optimized plasmids expressing pA-Tn5. IPTG was added
to the cultures to induce recombinant protein expression. The gene optimized by CodOpt
achieved significantly greater expression than the original gene.

5 Web Application
A web application was built to provide researchers around the globe with the functionality
of the CodOpt models. The application is hosted through Amazon Web Services (AWS)
for scalable and reliable global hosting. Using the app, researchers developing vaccines and
pharmaceuticals can accelerate their work, broadening the impact of these crucial treatments.

After entering and logging into the application, researchers can:

• Select the host species they are using for recombinant expression (Escherichia coli,
Saccharomyces cerevisiae, or Cricetulus griseus).

• Input the recombinant DNA sequence for the vaccine, pharmaceutical, or other recom-
binant protein they intend to manufacture.

• Generate a DNA sequence optimized by the stacked LSTM model for maximal expres-
sion within the selected host organism.

The stacked LSTM model trained for each host species was saved in the Open Neural
Network Exchange (ONNX) format. ONNX is an extensible, cross-platform file format for
saving machine learning and deep learning models. Since ONNX is used for integrating the
models, future updates to the models can utilize other deep-learning frameworks if needed.

After a researcher submits an input sequence, the application generates an optimized
sequence as follows.

• The amino acids for the corresponding protein are determined using the genetic code.

• The saved model is loaded with the ONNX Runtime for Python and used to predict a
codon probability distribution for each amino acid.

• The codons with the highest probabilities are returned as the output DNA sequence.

• The input and output sequences are stored in the application’s database, so that re-
searchers can return and review previous results.
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5.1 API and Publishing

Some researchers or organizations may seek to integrate the CodOpt into their pipelines.
A JSON API was developed for such integrations to allow other programs and servers to
interact with the models. Developers can programmatically submit DNA sequences with
JSON and forward the optimized sequences to other applications or databases through the
API. Therefore, developers for labs or companies developing recombinant proteins can build
applications that meet organizational needs while utilizing the powerful CodOpt models.

Furthermore, the CodOpt models can be published to model networks such as TensorFlow
Hub. Through these networks, other developers could download the models’ weights and
reuse or repurpose the models as needed.

5.2 Web Application Examples

5.2.1 Species Pages
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6 Conclusions
This research improves the efficiency of heterologous expression for developing vaccines,
pharmaceuticals, and other recombinant proteins. Codon optimization algorithms revise
recombinant sequences to increase expression levels. However, the common strategy of re-
moving all rare codons ignores evolutionary details embedded in DNA sequences, such as
the contextual usage of rare codons for protein folding. This standard technique can induce
metabolic stress in host cells and produce misfolded proteins that harm patients. Therefore,
novel codon optimization techniques must increase expression levels while considering the
significance of rare codons and other sequence properties.

The CodOpt networks optimize codon sequences by emulating the highly expressed genes
of host species. Evolution has tuned these genes to ensure high protein expression while
avoiding protein misfolding and other dangerous side effects. Since deep learning can learn
at multiple levels of abstraction, the CodOpt networks can emulate these highly expressed
genes by comprehending their patterns and structures. By applying this understanding to
recombinant sequences, the CodOpt networks can improve expression levels without causing
detrimental side effects such as protein misfolding.

The CodOpt networks were compared by their capability to enhance protein production.
The stacked LSTM architecture achieved the highest global codon adaptation index (CAI),
which predicts protein expression quantitatively using codon bias. Since the models were
trained to predict natural codon sequences, they successfully avoided standard optimization
techniques, mitigating consequences such as metabolic stress and protein misfolding. Instead,
as confirmed by feature analysis, the stacked LSTM model learned several evolutionary
features that affect where rare codons are used in natural sequences. Finally, the CodOpt
web application enables global access to codon-optimization tools based on deep learning,
accelerating the development of safe vaccines and pharmaceuticals.

The CodOpt models can accelerate the development of safe vaccines and pharmaceuticals
by addressing the drawbacks of current solutions for codon optimization. This enhancement
could save lives, especially during outbreaks that require the rapid design of therapeutics to
fight disease.
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7 Future Research
Further research can extend and improve the CodOpt models and deploy the host-independent
pipeline publicly.

• Further evolutionary feature analysis. The CodOpt networks were trained to emulate
highly expressed natural genes from host organisms. By visualizing the activations of
the recurrent units within the stacked LSTM, five discernible features learned by the
model from those genes were identified. Future research could investigate the other
activation heatmaps to decipher the properties learned by the model entirely. Neural
networks can discern patterns unnoticeable to humans, so further feature analysis may
reveal unknown or ignored sequence properties that improve protein expression.

• Further experimental trials. Experimental evidence demonstrates that CodOpt-optimized
sequences generate significantly more protein than unoptimized sequences. The lab
trial conducted with the CodOpt models analyzed the expression of pA-Tn5, a cru-
cial recombinant protein used in the CUT&Tag procedure for analyzing DNA–protein
interactions. Further lab trials could establish this increase for multiple proteins and
compare the CodOpt models to commercially available optimization techniques on
metrics such as expression, protein folding, and protein solubility.

• Transfer learning for less common hosts. The CodOpt models are trained for popular
heterologous hosts with extensive, public sequencing data. For example, Escherichia
coli is the most studied model organism, and the sequencing data available online for
E. coli included over two thousand genomes with tens of millions of genes. However,
training models for less common hosts may require more data than is publicly available.
Transfer learning, which tunes neural networks for new tasks, could solve this data
disparity. Future research could apply transfer learning to build networks for less
common hosts.

• Optimizing promoter sequences and other sequence regions. The CodOpt models were
built to optimize genetic coding regions that define proteins. However, many auxiliary
sequences, such as promoter sequences that initiate transcription, also contribute to
gene expression. Future research could use deep learning to optimize these regions,
further improving recombinant expression.
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