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Background: Recombinant Vaccines and Pharmaceuticals

Proteins are biomolecules that perform active functions in all living organisms. Every protein 
contains amino acids and is defined by the codons within a gene. Since there are twenty amino 
acids and sixty-four codons, some codons (synonymous codons) encode the same amino acid.

Recombinant DNA technology produces proteins, such as vaccines and pharmaceuticals, that 
are crucial to mitigating global health challenges. Examples include:

● COVID-19 vaccines
● Flu vaccines
● Recombinant granulocyte colony-stimulating factor for treating cancer
● Recombinant insulin for treating diabetes
● Recombinant human growth hormone for treating growth hormone deficiency

These recombinant proteins save millions of lives and advance the study of a plethora of 
diseases, so developing them efficiently is paramount.

To design a recombinant gene for a vaccine or pharmaceutical, researchers must select codons 
to encode its amino acids. However, synonymous codons are not equivalent because they occur 
at different frequencies (codon bias). For example, the codons "CTG" and "CTA" both encode the 
amino acid leucine, but in E. coli, "CTG" occurs fifteen times more often than "CTA."

Due to codon bias, research shows that choosing certain synonymous codons over others 
(codon optimization) can amplify protein expression hundreds of times. This enhancement can 
accelerate the rapid design and production of therapeutics during health emergencies.

The translation of the codons within a 
gene to the amino acids that form a 
protein. Image by Terese Winslow.

Codon bias within Escherichia coli. 
Image from CoGe Genomics.

These recombinant proteins save millions of lives, especially during outbreaks such as the 
COVID-19 pandemic that require the rapid design of therapeutics to fight disease.

Research shows that choosing certain synonymous codons over others (codon optimization) can 
amplify protein expression hundreds of times. This enhancement can accelerate the rapid design 
and production of therapeutics during health emergencies.



Purpose and Hypothesis

Combating health emergencies such as COVID-19 requires the efficient production of 
high-efficacy vaccines and pharmaceuticals. Codon optimization is essential to ensuring the 
timely and cost-effective production of recombinant proteins.

Common optimization techniques, used by tools such as GenSmart, replace all rare codons with 
frequent codons. However, this strategy ignores the significance of rare codons at certain 
locations and the evolutionary details that stabilize natural protein production.

● Many common optimization techniques entirely ignore rare codons. Although rare 
codons can slow translation, this strategy causes tRNA imbalance and removes rare 
codons that allow for protein folding.

These consequences cause metabolic stress that harms host cells and protein misfolding that 
endangers patients.

● When a pharmaceutical is administered, misfolded proteins can trigger the production of 
anti-drug antibodies (ADAs) that hinder a patient's natural protein pool.

● Although recombinant proteins are intended to complement natural protein pools, 
misfolded proteins can harm patients instead of helping them.

Hypothesis: By learning the evolutionary patterns embedded within high-expression genes, 
neural networks could improve codon sequences without these drawbacks. Deep-learning 
models extract features from data at multiple levels of abstraction. With this ability, they could 
analyze large dataset of genomic DNA sequences and learn the contextual usage of rare codons.

The benefits of codon optimization 
for recombinant protein production. 
Image from EurekAlert!.

The drawbacks of standard codon 
optimization techniques. Image 
from Buhr et al.

These consequences cause metabolic stress that hinders recombinant expression and protein 
misfolding that endangers patients.

Hypothesis: By learning to emulate high-expression genes from host organisms, neural networks 
can amplify protein expression while avoiding drawbacks such as metabolic stress and misfolding 
that natural genes avoid. A web application could provide global access to optimization tools 
based on deep learning, accelerating vaccine and pharmaceutical development and saving lives.



Methods: Genomic Data Pipeline

The genomic data pipeline was applied to three popular recombinant hosts: Escherichia coli, 
baker's yeast (Saccharomyces cerevisiae), and Chinese hamster ovary cells.

For each host, neural networks were trained to optimize codon sequences by learning to predict 
the codon sequences of natural, high-expression genes from the corresponding amino acids.

● Evolutionary pressure has tuned these genes to achieve both high expression and safe 
protein production without misfolding.

● By understanding abstract features within these genes, neural networks can optimize 
recombinant sequences to achieve the same efficiency and safety as natural protein 
production.

Up to ten million genes per host organism were downloaded from NCBI. VSEARCH was used to 
eliminate redundant genes within these large datasets.

● Sequences with pairwise similarities above 90% were clustered together.
● The centroid sequences, one from each cluster, were then stored in a FASTA file.

Sequences were ranked using the global Codon Adaptation Index (gCAI) algorithm for predicting 
expression. Genes were selected if their gCAI values were above the 80th percentile.

The data pipeline is host-independent, so researchers can easily train models for other host 
organisms.

The pipeline for distilling tens of millions of 
genes into a standardized and high-quality 
dataset for deep learning.

The genomic data pipeline was applied to three popular recombinant hosts: Escherichia coli, 
baker's yeast (Saccharomyces cerevisiae), and Chinese hamster ovary cells.

The data pipeline is host-independent, so researchers can easily train models for other host 
organisms.



Methods: Model Architectures

Neural network architectures are specific arrangements of the neurons and connections 
within a model.

Network Designs: Convolutional neural networks (CNNs), recurrent neural networks 
(RNNs), and transformers were built and compared to determine the best architecture.

● CNNs are used for computer vision, and their spatial invariance allows them to 
detect features or patterns at any location within an amino-acid sequence.

● RNNs (simple RNNs, GRUs, and LSTMs) are used for language processing and 
with their contextual understanding can select rare codons where necessary.

● Transformers with their attention mechanisms can identify which amino acids 
should affect a codon selection.

Architectures and Hyperparameters: Each neural network accepts one-hot encoded 
amino acids and returns probability distributions for the codon for each amino acid.

● A sequence-to-sequence CNN was built using convolutions with strides of one, 
with skip-layer connections between earlier convolutional layers and later ones.

● Multiple RNNs were built, including the gated recurrent unit (GRU) and long 
short-term memory (LSTM) variants of the traditional RNN. Unstacked and 
stacked models, with between 128 and 512 units per cell, were compared.

● A sequence-to-sequence transformer was built with four parallel attention 
heads followed by two convolutional layers.

The architecture of the stacked LSTM model.

The hyperparameter configurations for the eight 
model architectures after training and tuning.

Network Designs: Convolutional neural networks (CNNs), recurrent neural networks 
(RNNs), and transformers were built and compared to determine the best architecture.

Architectures and Hyperparameters: Each neural network accepts one-hot encoded 
amino acids and returns probability distributions for the codon for each amino acid.



Methods: Model Training

The neural networks were trained to predict the natural codon sequences of the 
high-expression proteins for each host organism.

By learning to emulate natural high-expression genes, rather than relying on theoretical 
assumptions, the models can improve expression levels without ignoring the evolutionary 
details that stabilize natural protein production.

The networks were compared according to:

● Their predictions' categorical accuracy: how closely the predictions matched the natural 
genes that determine the inputted amino acids.

● Their predictions' average gCAI: the expected expression levels of the outputted genes.

The hyperparameters of the model architectures were carefully tuned to improve categorical 
accuracy according to validation performance. For each model architecture, these 
hyperparameters include:

● The network depth and layer sizes
● The encoding method (one-hot encoding or a linear embedding layer)

The training sequences had varying lengths, ranging from fifty amino acids to thousands, so the 
training batches contained one sequence each. The Adam optimizer was applied with a learning 
rate of 0.0001 or 0.00001. The models were trained until the categorical accuracy increased 
negligibly between epochs.

The pipeline for utilizing a dataset of highly 
expressed genes to train neural networks 
that generate optimized codon sequences.

By learning to emulate natural high-expression genes, rather than relying on theoretical 
assumptions, the models can improve expression levels without ignoring the evolutionary details 
that stabilize natural protein production.

The training sequences had varying lengths, ranging from fifty amino acids to thousands, so the 
training batches contained one sequence each. The Adam optimizer was used with the 
categorical cross-entropy loss function and a learning rate between 0.0001 and 0.00001. The 
models were trained until the categorical accuracy increased negligibly between epochs.



Results: Model Performance and Statistical Analysis

The global Codon Adaptation Index (gCAI) quantitatively 
predicts the protein expression of a genetic sequence. The 
gCAI algorithm uses the codon bias of a genome to 
recursively determine a gCAI weight (w

i,j
) for each codon.

The average gCAI for the testing sequences increased 
significantly after optimization, demonstrating that the 
CodOpt models can substantially enhance protein 
expression.

The average gCAI of the sequences for all 
three hosts optimized by the stacked LSTM.The average gCAI of the Escherichia coli 

sequences optimized by various models. Most Performant Architecture: The most performant model for 
Escherichia coli was the stacked LSTM, which achieved an average gCAI of 
0.949 on testing data, an improvement of 58% over the original 0.60.

By a one-sided Wilcoxon signed-rank test, the gCAIs of the optimized 
sequences (μ = 0.949) were significantly greater than the gCAIs of the 
original testing sequences (μ = 0.600), with a p-value of 4.14 × 10−16.

Additionally, the stacked LSTM achieved the highest average gCAI for 
baker’s yeast and Chinese hamster ovary cells.

GC Content: GC content (the proportion of bases that are guanine or 
cytosine) relates to the stability of translation. Values below 30% or above 
70% can cause secondary structure formation that inhibits translation. All 
the models produced sequences with GC contents between 30% and 70%.

The global Codon Adaptation Index (gCAI) quantitatively 
predicts the protein expression of a genetic sequence. The 
gCAI algorithm uses the codon bias of a genome to 
recursively determine a gCAI weight (w

i,j
) for each codon.

Most Performant Architecture: The most performant model for 
Escherichia coli was the stacked LSTM, which achieved an average gCAI of 
0.949 on testing data, an improvement of 58% over the original 0.600.

Additionally, the stacked LSTM achieved the highest average gCAI for 
baker’s yeast and Chinese hamster ovary cells.

Expression levels versus CAI for E. 
coli. Image from dos Reis et al.



Results: Evolutionary Phenomenon Analysis

Feature analysis visualizes the patterns that neural networks learn during training, 
enabling researchers to understand a model's predictions. These visualizations can 
reveal new insights in developing domains such as codon optimization.

The most performant model, the stacked LSTM, contained five bidirectional recurrent 
cells with 128 units each. Each unit of each cell learned to identify specific sequence 
properties, such as evolutionary patterns that determine where rare codons are used.

To understand the features learned by the stacked LSTM for E. coli, the output of each 
unit was captured as the model performed prediction on the testing dataset. Heatmaps 
of these output values were created and inspected for features learned by the model.

The five plots shown demonstrate that the network learned multiple, discernible 
evolutionary phenomena that affect the usage of rare codons:

● Rare codons cluster at a sequence's start and end, ensuring efficient translation 
initiation and conclusion.

● The appearance of rare codons correlates with the Kyte-Doolittle hydropathy (a 
measure of hydrophobicity and hydrophilicity) of different protein regions. Rare 
codons cluster in hydrophobic areas where folding often must be slowed.

● Rare codons correspond with intrinsically disordered protein regions, ensuring 
the correct folding of such areas.

● In transmembrane proteins, rare codons cluster in positions 50 to 70 to allow 
for unhindered cotranslational insertion of the proteins.

A unit identifying the amino acids toward the beginning of a sequence.

A unit identifying the amino acids toward the end of a sequence.

A unit whose value at each amino acid correlates with hydropathy.

A unit whose value at each amino acid correlates with protein disorder.

A unit activated at amino acids 50 to 70 (with some noise from 
connections with previous layers) for a transmembrane protein.

The most performant model, the stacked LSTM, contained five bidirectional recurrent 
cells with 128 units each. Each unit of each cell learned to identify specific sequence 
properties, such as evolutionary patterns that determine where rare codons are used.

The five plots shown demonstrate that the network learned multiple, discernible 
evolutionary phenomena that affect rare-codon usage:



Results: Optimized Protein Expression in E. coli

To validate the CodOpt models experimentally, a recombinant protein was 
expressed in Escherichia coli cells, using both an original DNA sequence and a 
sequence optimized with CodOpt. The procedure for this lab trial was conducted 
by researchers at the Lu Lab in the Columbia University Irving Medical Center.

The protein expressed was pA-Tn5, a fusion protein containing protein A and Tn5 
transposase. pA-Tn5 is crucial to CUT&Tag, a high-resolution method for studying 
protein–DNA interactions that underlie many biological processes and diseases.

The original DNA sequence for pA-Tn5 was sourced from the widely used plasmid 
repository Addgene. The optimized sequence was created with the stacked LSTM, 
the most performant CodOpt model.

Both the original and optimized sequences were cloned into the same plasmid. 
The plasmids were introduced into separate Escherichia coli colonies, and 
recombinant protein expression was induced.

After expression and lysing, the pA-Tn5 was stained and isolated with gel 
electrophoresis. A fluorescent scanner was used to visualize protein expression.

Visibly, the optimized plasmid achieved significantly greater expression than the 
unoptimized plasmid. Therefore, the codon sequences optimized with CodOpt 
can significantly enhance protein expression, accelerating the production of 
pA-Tn5 and other recombinant proteins such as vaccines and pharmaceuticals.

The original and CodOpt-optimized plasmids were both 
expressed in E. coli colonies. As revealed by staining and gel 
electrophoresis, the gene optimized by CodOpt achieved 
significantly higher expression than the original gene.

The protein expressed was pA-Tn5, a fusion protein containing both protein A and 
Tn5 transposase. pA-Tn5 is crucial to CUT&Tag, a low-cost method for studying 
protein–DNA interactions, which underlie many biological processes and diseases.

The gene optimized by CodOpt resulted in significantly greater expression than the 
original gene. Therefore, codon optimization with CodOpt can greatly improve 
protein expression, accelerating the production of pA-Tn5 and other recombinant 
proteins such as vaccines and pharmaceuticals.

The procedure for recombinant protein production. Plasmids 
with a gene are introduced into host cells. After expression, the 
desired proteins are isolated. Image from Addgene.



CodOpt Web Application

A web application was built to provide researchers around the globe with the functionality of 
the CodOpt models. Using the app, researchers developing vaccines and pharmaceuticals can 
accelerate their work, broadening the impact of these crucial treatments. Researchers can:

● Select the host species they are using for recombinant expression (Escherichia coli, 
Saccharomyces cerevisiae, or Cricetulus griseus)

● Input the recombinant DNA sequence for the vaccine, pharmaceutical, or other 
recombinant protein they intend to manufacture

● Generate a DNA sequence optimized by the stacked LSTM model for maximal expression 
within the selected host organism

For deployment, the stacked LSTM model for each species was saved in the Open Neural 
Network Exchange (ONNX) format, a cross-framework file format for saving neural networks.

● When a researcher accesses the application and submits an input codon sequence, the 
amino acids for the corresponding protein are determined using the genetic code.

● The saved model is loaded with the ONNX Runtime for Python and used to predict a 
codon probability distribution for each amino acid.

● The codons with the highest probabilities are returned as the output DNA sequence.

Some researchers or organizations may seek to integrate the models into their own pipelines. In 
this situation, developers may use the JSON API to receive optimized sequences 
programmatically and then forward the output data to other applications or databases.

A web application was built to provide researchers around the globe with the functionality of the 
CodOpt models. Using the app, researchers developing vaccines and pharmaceuticals can 
accelerate their work, broadening the impact of these crucial treatments. Researchers can:

Some researchers or organizations may seek to integrate the models into their own pipelines. For 
this scenario, a JSON API was built, through which developers can request optimized sequences 
programmatically and forward the output to other applications or databases.

For deployment, the stacked LSTM model for each species was saved in the Open Neural Network 
Exchange (ONNX) format, a cross-framework file format for saving neural networks.



Conclusions and Future Work

Conclusions

The CodOpt networks were compared by their capability to 
enhance protein production. The stacked LSTM architecture 
achieved the highest gCAI after optimization.

Since the neural networks were trained to predict natural 
codon sequences, they successfully avoided the standard 
optimization technique of using only frequent codons, 
mitigating consequences such as metabolic stress and protein 
misfolding.

According to visual feature analyses, the stacked LSTM model 
learned several evolutionary features of amino acid 
sequences, including the effects of sequential location, 
hydropathy, and protein disorder on codon usage.

Applications

CodOpt can accelerate the development of vaccines and 
pharmaceuticals by solving the drawbacks of current solutions 
for codon optimization. This enhancement can save millions 
of lives, especially during outbreaks that require the rapid 
design of therapeutics to fight disease.

Future Work

Feature Analysis: By visualizing the recurrent units of the stacked LSTM, 
five discernible features learned by the model were identified. Future 
research could investigate the other plots to better explain the model's 
decision-making and reveal unknown or ignored factors that affect codon 
optimization.

Transfer Learning: The models were trained for popular heterologous 
hosts with extensive, public sequencing data. However, less common hosts 
may require more data than available. Transfer learning, which tunes 
neural networks for new tasks, could solve this data disparity. Future 
research could apply transfer learning to build networks for less common 
hosts.

Optimizing Other Sequence Regions: The models were built to optimize 
the coding region of a gene. However, many auxiliary sequences, such as 
promoter sequences that initiate transcription, contribute to gene 
expression. Future research could apply deep learning to optimize these 
regions as well.

Experimental Trials: Currently, experimental evidence demonstrates that 
CodOpt-optimized sequences generate significantly more protein than 
unoptimized sequences. Further lab trials could establish this increase for 
a variety of proteins and compare CodOpt models to commercially 
available optimization techniques on metrics such as expression, protein 
folding, and protein solubility.

The CodOpt models can accelerate the development of safe 
vaccines and pharmaceuticals by addressing the drawbacks of 
current solutions for codon optimization. This enhancement 
could save millions of lives, especially during outbreaks that 
require the rapid design of therapeutics to fight disease.

The CodOpt networks were compared by their capability to 
enhance protein production. The stacked LSTM architecture 
achieved the highest gCAI after optimization.
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