
Physics behind Cooking 
Intelligence

Lisa (Nico) Wang

The Pennington School

112 W Delaware Ave, Pennington, NJ 08534



✓ Cooking provides such a rich set of opportunities and examples to learn and study science and in particular, physics. 

✓ Trying to understand the science in cooking, paired with edible lab experiments, generate enthusiasm and provide 
strong motivation for people to learn physics. 

✓ Physical understanding of the cooking process of food is vital to understand the underlying physical phenomena and 
to help optimize the culinary quality in terms of process, texture, and flavor optimization, and as well as safety of 
meat and other types of foods’ consumption. 

✓ A great example of applying physical thinking to the culinary arts is the story about how SLAC former director, 
Professor WKH 'Pief' Panofsky, developed its formula for baking of turkeys. 

Cooking Contains Rich Science/Physics!
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➢Chinese has been cooking typical and famous Chinese dishes like “Fish flavored shredded thread-pork”, “Pepper shredded beef”, 

“Kung Pao chicken”, “Sichuan boiled fish”, “Braised pork balls”, “General Tso’s chicken”, “Chinese fried rice”, “Sweet & sour pork”, 

“Mapo tofu”, “Chow Mein”, “Shredded potato”, or essentially similar dishes for hundreds if not thousands of years. 

➢The stir-frying cooking technique is one of the major cooking methods in Chinese or Asian (Indian) culinary. Stir-frying originated 

during the Han Dynasty (206BC – 220AD). Archeologists found evidences of woks and thinly sliced food in ancient civilization sites. 

Stir-frying became the dominant and primary Chinese cooking method during Ming Dynasty (1368 – 1644). 

➢The ancient nomadic lifestyle in China required the people then to be able to cook fast, clean easily, carry effortless, use minimal 

cooking oil, and consume minimal precious fuel which means the cooking method had to be most energy efficient. The wok with a

close to parabola shape can be heated up fast with least energy and concentrate the heat to the food at the bottom of the wok from 

the perspectives of conduction, convection, and radiation. The high heat nature and less cooking oil required accidentally led to more 

healthy food. The method eventually spread quickly to Japan around 1868 to 1912 and then to north America and the rest of the

world in the 20th century. The chronic shortage of fuel, i.e., wood, coal, and other fuel types, might be one of the major reasons 

behind stir-frying’s popular acceptance in ancient and modern China and other parts of the world. 

➢Another key leading to the feasibility of fast-speed cooking or shortest cooking time with stir-frying belongs actually to the main topic 

of this research. Before cooking, stir-frying requires the raw foods, no matter in what kind of original sizes and shapes and materials, 

to be shredded into small pieces in the shapes of thread/wire, sphere, thin slice, cube, etc. 

The Long and Rich History of Smart Cooking





A Simple Method to Determine Thermal Diffusivity

❑ Thermal couples with small diameters are used to measure the center temperature of the samples.

❑ The samples are boiled in boiling water (100 C). 

❑ Track the center temperature rise as the function of time. 
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Taro samples with two different diameters (25.75mm and 
26.5mm) were measured. The temperature of the center of 
the sphere sample is recorded as the function of time as shown 
in dots (26.5mm sample) and in triangles (25.75mm sample). 
The solid curves are calculated results based on the thermal 
diffusivity data as indicated in the figure. 

Potato samples with 5 different diameters (15.75mm, 
21mm, 22.5mm, 26.5mm, and 29.75mm) were 
measured. The temperature of the center of the sphere 
sample is recorded as the function of time as shown in 
dots. 

Experimental Measurement and Theoretical Simulation (fitting)



Thermal diffusivity (10-7 m2/s)

Food Diameter (mm) Low end value High end value
Potato 45.4 1.32 1.42
Potato 45 1.32 1.42
Potato 50 1.32 1.42
Potato 40 1.32 1.42
Potato 31.5 1.32 1.48
Potato 59.5 1.32 1.50
Potato 42 1.32 1.48
Potato 46 1.32 1.50
Potato 53 1.32 1.50
Potato (reheated) 51 1.52 1.60
Pumpkin 50 1.50 1.66
Pumpkin 35 1.50 1.72
Sweet potato 50.6 1.66 1.84
Sweet potato 46 1.66 1.75
Taro 51.5 1.50 1.60
Taro 53 1.40 1.50
Radish 40 1.30 1.40
Radish 41 1.55 1.65
Onion 63 1.60 1.78
Eggplant 47 2.20 5.00
Lemon 52 1.50 1.70
Tomato 50 1.40 1.60

9 different types of foods along with their determined thermal diffusivities. The data were determined based on fitting 
the measured temperature curve with the theoretical model with the thermal diffusivity as the fitting parameter. 



A simple, low-cost, fast, and accurate method to measure 
the diffusion coefficient of salt in various foods 

✓ Simple: samples are very easy to prepare.

✓ Low-cost: the total cost for the materials, tools, and instruments used in this research is less than $900!
• The compact salt meter (LAQUAtwin-salt-11) made by Horiba: $180.
• 200g x 0.1mg Digital Analytical Balance Lab Precision Scale from U.S. Solid: $480.
• Caliper: $20.
• All the food materials: $50.
• Salt: $30.
• Other containers and cooking wares: $100.

✓ Fast: it takes less than 20 minutes to measure each sample (excluding the brine times).

✓ Accurate: the measured results are consistent and accurate.



Different foods are cut into nearly perfect 
spheres with different diameters (top: sweet 
potato, middle: radish, right: taro).

Sample Preparation



Different foods are cut into nearly perfect spheres with different diameters (top: sweet potato, 
middle: radish, right: taro).

Sample Preparation



Why Spherical Shape?

❑Spherical symmetry makes the distance 
from the center only “parameter”.

❑Theoretically, it is easy to simulate.

❑Experimentally, it is easy to measure. 

❑The comparison between the theoretical 
calculation and the experimental 
measurement become possible and 
straightforward.



Experiment in Process: Brine 

Brine durations: 1 hour to 24 hours



❑ A compact salt meter (LAQUAtwin-salt-11) made 
by Horiba was used to determine the salt 
concentration. HORIBA's unique compact meter 
integrates the electrode, display and sample 
container to enable simple, effective on-site testing 
by direct measurement from a single drop. The 
LAQUAtwin-salt-11) can measure between 0% to 
10% in absolute concentrations with a relative 
precision of +/-4%.

❑ The sample is cut and a small piece (about 1 mg) is 
taken from the center of the sample and then is 
measured with the compact salt meter.

Salt Concentration Measurement Method
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Potato samples with same radius (24mm) were 
measured. The salt concentration at the center of the 
sphere sample is recorded as the function of brine time 
as shown in dots. The solid curves are the simulation 
with the diffusion coefficient as the only variable. 

Two potato samples with different radius (24mm and 
28.5mm) were measured. The brine time duration is kept at 
24 hours (86400 seconds). The salt concentration at the 
center of the sphere sample is recorded as the function of 
radius as shown in dots. The solid curves are the simulation 
with the diffusion coefficient as the only variable. 

Experimental Measurement and Theoretical Simulation (fitting)
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Experiment

Five sweet potato samples with different radius 
(13mm, 18mm, 21.5mm, 27mm, and 31mm) were 
measured. The brine time duration is kept at 24 
hours (86400 seconds). The salt concentration at the 
center of the sphere sample is recorded as the 
function of radius as shown in dots. The solid curves 
are the simulation with the diffusion coefficient as 
the only variable. 

Two taro samples with different radius (21mm and 
24.5mm) were measured. The brine time duration is 
kept at 24 hours (86400 seconds). The salt 
concentration at the center of the sphere sample is 
recorded as the function of radius as shown in dots. 
The solid curves are the simulation with the 
diffusion coefficient as the only variable. 

Experimental Measurement and Theoretical Simulation (fitting)
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Experiment

Two radish samples with different radius (19mm and 
25.5mm) were measured. The brine time duration is 
kept at 24 hours (86400 seconds). The salt 
concentration at the center of the sphere sample is 
recorded as the function of radius as shown in dots. 
The solid curves are the simulation with the diffusion 
coefficient as the only variable. 

Two potato samples with different radius (24mm and 26mm) 
were measured at 100℃. The brine time duration is kept at 3 
hours (10800 seconds). The salt concentration at the center of 
the sphere sample is recorded as the function of radius as 
shown in dots. The solid curves are the simulation with the 
diffusion coefficient as the only variable. 

Experimental Measurement and Theoretical Simulation (fitting)
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The dependency of the diffusion on temperature is described by the Arrhenius 

equation as follow:

𝐷𝑒 = 𝐷0𝑒
−

𝐸𝑎
𝑅𝑇

Where 𝐷𝑒 is the effective diffusion coefficient in m2/s. 𝐸𝑎 is the activation 

energy in meV or J/mol. 𝐷0 is the pre-exponential factor in m2/s. R is the gas 

constant (8.314 J/mol K). T is the absolute temperature. 

With T = 373K for our case, and De is between 8x10-9 to 1.1x10-8 m2/s, and 𝐷0

is between 8x10-10 to 1.2x10-9 m2/s, we derive the activation energy to be 

around 74meV or 7.13 kJ/mol. Potato samples with same radius (24mm) were 
measured at two different temperatures (20℃
and 100℃). The salt concentration at the center 
of the sphere sample is recorded as the function 
of brine time as shown in dots. The solid curves 
are the simulation with the diffusion coefficient 
as the only variable. 

Experimental Measurement and Theoretical Simulation (fitting)



Model of Physics

▪ Spherical approximation

▪ Diffuse uniformly from all directions

▪ Water salt concentration uniform

▪ The sample has an initial uniform zero (or close to 
zero) salt concentration

▪ The sample is a uniform material with physical 
parameters (i.e., diameter)

▪ The salt concentration at the center of the sphere is 
calculated (and measured) as a function of diffusion 
time.

▪ The diameter of the sample is a controlled variable

▪ Various samples are compared

Salt water
(20%)

Salt water
(20%)



The transportation of salt, sugar, water, oil, and other molecules and ions, is governed by the mass transfer 

process, which is described by an equation so-called Fick’s 2nd Law similar to the heat transfer equation:

𝛁 ⋅ 𝛁c =
1

𝐷

𝜕𝐶

𝜕𝑡

Where C = C (x, t) is the concentration of the molecules or ions, which is the function of location and time. D 

is the diffusion coefficient of the molecules or ions in m2/s.

Modeling of the Diffusion of Salt



Diffusion Coefficient (10-10 m2/s) 

@ 20℃
Food Low end value High end value
Potato 8.0 12.0
Pumpkin 11.0 13.0
Sweet potato 6.0 10.0
Taro 6.0 7.5
Radish 7.5 9.0

Five different types of foods along with their determined diffusion coefficient of salt. The data were 

determined based on fitting the measured salt concentration at the center of a spherical shaped 

food with the theoretical model with the diffusion coefficient as the fitting parameter. 



Cooking Sciences and Their Fantastic Aspects

➢ Heat and/versus Salt Diffusion: The Key to Understand Cooking 



❑ Why can’t we cook the duck eggs while getting them salted to the way we like within the same process and duration? 

Cooking the eggs only takes about 5 to 10 mins, however, the salting process to make the famous salted duck eggs 

requires 20 or even 30 days. The similar question exists for salted pork, salted fish, salted duck, salted vegetables, and 

many more salted foods.

❑ For the popular French Fries, in a cooking oil bath with a temperature around 150-160 ℃, with a dimension of typical 

5x5 mm in cross section, it only takes 30 seconds to get them cooked, i.e., to reach over 100 ℃ across the whole fries. 

Why do we need to have a double frying process in the standard McDonald’s recipe, with the first frying for 5 mins at 

163 ℃, that alone is 10 times of the duration required to heat the fries from the heating perspective, and the second 

frying for 2-3 mins at even higher temperature like 180 ℃. The intervals between the two frying can be days or even 

months?  

❑ Why different types of noodles or spaghettis with similar cross-section dimensions (diameters) would need a cooking 

time, while being soaked in boiling water, ranging from 1-3 mins to 12-14 mins, an order of magnitude in difference?

❑ While Chinese stir-frying dishes only take about 3 mins to cook, is it because of the need of heating process alone? If 

we look at the hotpot, the similar-sized food only takes about 20 seconds to dip in the 100 ℃ pot to be ready to eat 

(but with a dipping source to gain flavor). What prevents us from further shrinking down the cooking time in the stir-

frying cooking? 



The quadratic dependence of the diffusion to the dimension 

✓ It is clear that the cooking time to reach the same center temperature also has a perfect (with the 

fitting 𝑅2 = 1.00) square relationship with the thickness of the meat slices. For a meat slice with a 

thickness of about 1 to 2 mm, it only takes about few seconds (1.21 to 6.5 second) to reach the 

required temperatures. For a meat slice of 25 mm in thickness (i.e., about 1 inch), it will take 755 

second to reach 75 ℃ at the center of the slice, and takes 1010 second to reach 85 ℃ at the center of 

the slice. 

✓ We see that with a similar critical dimension, it takes much longer for a slice to reach the same center 

temperature as what a ball does. A slice with thickness of 25 mm requires a cooking time which is 

equivalent to a ball with radius of about 23 mm or a diameter of about 46 mm which is 2 times of the 

thickness of the slice. For the slice, the heat goes in from one direction which is perpendicular to the 

slice surface. In comparison, for the ball, the heat goes in from all directions. 



The Quadratic Dependence of Cooking Time to Food Critical Dimension
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Cooking time of meatballs, in seconds, as function of the radius of the meatballs, 
in millimeters. The blue dots are the ones with the temperature at the center of 
the meatball reaching 75℃, and the orange dots are the ones with the center 
temperature reaching 85℃. The dotted curves are the fitting curves with the 
fitting parameters listed on the figure.
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Cooking time of thin meat slices, in seconds, as function of the thickness of the 
meat slices, in millimeters. The blue dots are the ones with the temperature at 
the center of the meat slice reaching 75℃, and the orange dots are the ones with 
the center temperature reaching 85℃. The dotted curves are the fitting curves 
with the fitting parameters listed on the figure.



✓ In the discussion above, a cube with a side length of a is equivalent to a sphere with diameter of 0.8a. That is, for a 

meatball with 25 mm (1 inch) in diameter, it takes the same time to reach the same center temperature for a meat cube 

with a size length of 20 mm. It is about the same if this applies to a short cylinder shape.

✓ Our calculated cooking times for hot-potting, boiling, stewing meats in the shape of balls, cubes, short cylinders, thin 

slices match very well with the corresponding times from our real time experiences. 

✓ For instances, in Chinese hot-pot case, we typically only dip the meat (lamb, beef, fish) slices (with thickness from 0.5 to 2 

mm) for only a few seconds. Our calculations call for 1.5 seconds for 1 mm thick meat slice and about 5-7 seconds for 2 

mm thick meat slices.  For fish or beef balls, the typical diameters are around 20 mm, the dipping/cooking time is 

typically a couple of minutes to a few minutes. Our calculation gives around 3 mins for 20-mm diameter meatballs. For 

large meat balls (Lion Balls) or cubes (Pork Cube), they have diameters around 50 mm (2-inch), the typical cooking time in 

boiled soup is around 20 mins. Our calculation gives 16-20 mins. 

Explain Well about Cooking Times for Various Foods



Material properties Unit Pork Chicken Beef Lamb Fish Shrimp Bread Egg Turkey Peking Duck Pizza Potato Water

density Kg/m3 1100 1150 1150 1150 1150 1150 800 1038 1050 1050 1200 1100 1000

specific heat J/(Kg K) 3130 3500 3230 2800 3620 3650 2720 3000 3530 3000 2300 3670 4200

thermal conductivity W/(m K) 0.45 0.45 0.48 0.5 0.54 0.5 0.5 0.58 0.5 0.45 0.5 0.55 0.58

thermal diffusivity m2/s 1.31E-07 1.12E-07 1.29E-07 1.55E-07 1.30E-07 1.19E-07 2.30E-07 1.86E-07 1.35E-07 1.43E-07 1.81E-07 1.36E-07 1.38E-07

➢ Physical parameters, including the thermal diffusivity (thermal diffusion coefficient), for some 
of our daily food materials.

➢ However, the reported mass diffusion coefficients, 𝐷𝑀, is in the range from 1.0x10-12 m2/s to 

1.0x10-8 m2/s, with the most credible reported values around 2-5x10-10 m2/s, for diffusion of salt, 

sugar, water, etc. in the body of the typical foods. 

Compare thermal diffusion with mass diffusion (salt, sugar, etc.)



Both heating and salting times are 
quadratic power to the critical 
dimension of the food.
Cut the critical dimension by half will 
reduce the cooking time by 4 times. 

❑ Thermal diffusivity ~ 1x10-7 m2/s
❑ Salt diffusion coefficient ~ 1x10-9 m2/s
❑ Salt diffuses 100 times slower than heat (still 

10 times slower even at elevated 
temperature)

Pre-cut the food into small pieces (cubes, slices, 
strips, etc.) will significantly reduce the cooking 
time and meanwhile make the salting and other 
flavoring much more effective, by a factor of 10 
to 100!

Intelligence in Chinese Cooking

The fastest serving 
restaurant: 3 minutes 

The famous “Spyce Kitchen”, the robotic restaurant 

founded by four MIT graduates and Michelle 4-Star cook, 

claimed fast on-site cooking delivery with a cooking time of 

less than 3 minutes, is based on stir-frying cooking method 

with shredded food pieces.    



The figure shows the calculated temperature and salt diffusion as a function of time for a spherical food piece with a diameter of 50 

mm (for instance, a meatball). The yellow curve shows the center temperature rise with time during cooking with the thermal 

diffusivity of 1.5x10-7 m2/s. The gray, orange, and blue curves are the calculated center salt concentration with time, with the salt 

diffusion coefficient of 1.5x10-10 m2/s (blue), 1.5x10-9 m2/s (orange), and 1.5x10-8 m2/s (gray).



The calculated temperature and 
salt diffusion as a function of 
time for a spherical food piece 
with a diameter of 50 mm (for 
instance, a meatball). The yellow 
curve shows the center 
temperature rise with time 
during cooking with the thermal 
diffusivity of 1.5x10-7 m2/s. The 
gray, orange and blue curves are 
the calculated center salt 
concentration with time, with 
the salt diffusion coefficient of 
1.5x10-10 m2/s (blue), 1.5x10-9

m2/s (orange), and 1.5x10-8 m2/s 
(gray).

The Quadratic Dependence of Cooking Time to Food Critical Dimension

The Physics Behind Cooking Intelligence

Our previous publication:

Yifei “Jenny” Jin, Lisa R. Wang, and  Jian Jim Wang, Physics in 
turkey cooking: Revisit the Panofsky formula, AIP Advances 11, 
115316 (2021); https://doi.org/10.1063/5.0067811

Lisa R. Wang, Yifei “Jenny” Jin, and Jian Jim Wang, A Simple and 
Low-cost Experimental Method to Determine the Thermal 
Diffusivity of Various Types of Foods, American Journal of 
Physics, Vol.90, Issue 8, https://doi.org/10.1119/5.0087135 DOI: 
10.1119/5.0087135 August, 2022. 

𝛁 ⋅ 𝛁C  =   
1

𝐷

𝜕𝐶

𝜕𝑡
 

The concentration at the center of the sphere is (r = 0): 

𝐶𝑐  =  𝐶ℎ  −  2 𝐶ℎ  −  𝐶0    −1 𝑛+1 ∙ 𝑒−𝑡/𝜏 ∞
𝑛=1              Where:  𝜏 =  

𝑅
2

𝜋2∙𝐷
 

A Simple Approach to Determine Diffusion Coefficient of Salt in Various Food

𝐷𝑒 = 𝐷0𝑒
−

𝐸𝑎
𝑅𝑇

De: 8x10-9 to 1.1x10-8 m2/s

𝐷0: 8x10-10 to 1.2x10-9 m2/s

𝐸𝑎: 74meV 

https://doi.org/10.1063/5.0067811
https://doi.org/10.1119/5.0087135


Additional Slides: Theoretical Model



Heat Transfer Equation

x x + δx

q q Fourier’s Law states that the heat flux q (in W/m2) is proportional to the temperature gradient, i.e., q = - k∙
𝑑𝑇

𝑑𝑥
for one-

dimensional systems. For the 3-dimensional system, Ԧ𝑞 = - k∙ 𝛁T where Ԧ𝑞 is a vector and 𝛁 is the gradient. k is thermal 

conductivity in W/(cm∙ K).

𝑄𝑛𝑒𝑡 = 𝐴 ∙ 𝑞𝑥+𝛿𝑥 − 𝑞𝑥 = −𝑘𝐴 ∙
𝜕𝑇

𝜕𝑥𝑥+𝛿𝑥
−

𝜕𝑇

𝜕𝑥𝑥
= −𝑘𝐴 ∙

𝜕𝑇

𝜕𝑥𝑥+𝛿𝑥
−

𝜕𝑇

𝜕𝑥𝑥

𝑑𝑥
∙ 𝑑𝑥 = −𝑘𝐴 ∙

𝜕2𝑇

𝜕𝑥2 ∙ 𝑑𝑥

− 𝑄𝑛𝑒𝑡 =
𝑑𝑈

𝑑𝑡
= 𝜌𝑐𝐴 ∙

𝑑 𝑇 − 𝑇𝑟𝑒𝑓

𝑑𝑡
∙ 𝑑𝑥 = 𝜌𝑐𝐴 ∙

𝑑𝑇

𝑑𝑡
∙ 𝑑𝑥

This leads to the one-dimensional heat diffusion equation:

𝜕2𝑇

𝜕𝑥2
=

ρc

𝑘

𝜕𝑇

𝜕𝑡
=

1

𝛼

𝜕𝑇

𝜕𝑡

Where T = T (x, t) and α = k/ρc is the thermal diffusivity in m2/s, where ρ is the density (kg/m3) and c is the specific heat (J/(kg ∙ K)).

In three-dimension, the heat transfer equation becomes:

𝛁 ⋅ 𝛁T =
1

𝛼

𝜕𝑇

𝜕𝑡

Where,

𝛁 ⋅ 𝛁𝑇 =
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
𝑓𝑜𝑟 𝐶𝑎𝑟𝑡𝑖𝑠𝑖𝑎𝑛 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

=
1

𝑟2 sin 𝜃
sin 𝜃

𝜕

𝜕𝑟
𝑟2

𝜕𝑇

𝜕𝑟
+

𝜕

𝜕𝜃
sin 𝜃

𝜕𝑇

𝜕𝜃
+

1

sin 𝜃

𝜕2𝑇

𝜕𝜑2
𝑓𝑜𝑟 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

=
1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝑇

𝜕𝑟
+

1

𝑟2

𝜕2𝑇

𝜕𝜃2
+

𝜕2𝑇

𝜕𝑧2
𝑓𝑜𝑟 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠
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Heat Transfer for A sphere with azimuthal symmetry

For a sphere with azimuthal symmetry, during the heat transfer, we have 
𝜕𝑇

𝜕𝜃
= 0 and 

𝜕2𝑇

𝜕𝜑2 = 0, the heat transfer equation becomes

1

𝑟2

𝜕

𝜕𝑟
𝑟2

𝜕𝑇

𝜕𝑟
=

1

𝛼

𝜕𝑇

𝜕𝑡

Applying 𝑉 = 𝑟 ∙ 𝑇 to the above equation, for 0 ≤ 𝑟 ≤ 𝑅 we get:

𝜕2𝑉

𝜕𝑟2
=

1

𝛼

𝜕𝑉

𝜕𝑡

We can decouple V(r, t) into: 

𝑉 𝑟, 𝑡 = 𝑅 𝑟 ∙ 𝑇 𝑡 

And we get:

𝜕𝑉

𝜕𝑡
= 𝑅 𝑟 ∙

𝜕𝑇

𝜕𝑡
= 𝑅 𝑟 ∙ 𝑇′ 𝑡 

And:

𝜕2𝑉

𝜕𝑟2
= 𝑇 𝑡 ∙ 𝑅” 𝑟 

Then, we have:

𝑇 𝑡 ∙ 𝑅” 𝑡 =
1

𝛼
∙ 𝑅 𝑟 ∙ 𝑇′ 𝑡 

It can be rearranged into:

𝑅” 𝑟 

𝑅 𝑟 
=

1

𝛼
∙
𝑇′ 𝑡 

𝑇 𝑡 

Since the left side is only be r-dependent and the right side is only be t-dependent, and since they equal to each other, they must be neither r- or t- dependent. 

So, we have:

𝑅” 𝑟 

𝑅 𝑟 
=

1

𝛼
∙
𝑇′ 𝑡 

𝑇 𝑡 
= −𝜆



Then, we have:

𝑅” + 𝜆𝑅 = 0

And 

𝑇′ + 𝜆𝛼𝑇 = 0

From the above equation, we have: 

𝑑𝑇

𝑑𝑡
= −𝜆𝛼𝑇

𝑑𝑇

𝑇
= −𝜆𝛼 ∙ 𝑑𝑡

න
0

𝑡 𝑑𝑇

𝑇
= −𝜆𝛼 ∙ න

0

𝑡

𝑑𝑡

𝑙𝑛𝑇 𝑡 – 𝑙𝑛𝑇 0 = −𝜆𝛼𝑡

𝑇 𝑡 = 𝑒−𝜆𝛼𝑡 ∙ 𝑇 0 

For 𝑅” + 𝜆𝑅 = 0

𝑑2𝑅 𝑟 

𝑑𝑟2
= −𝜆 ∙ 𝑅 𝑟 

𝑅 𝑟 = A cos 𝜆 ∙ 𝑟 + B sin 𝜆 ∙ 𝑟

Now, we have:

𝑉 𝑟, 𝑡 = ෍

𝜆

A cos 𝜆 ∙ 𝑟 + B sin 𝜆 ∙ 𝑟 ∙ 𝑒−𝜆𝛼𝑡

𝑇 𝑟, 𝑡 = ෍

𝜆

A cos 𝜆 ∙ 𝑟 + B sin 𝜆 ∙ 𝑟 ∙
𝑒−𝜆𝛼𝑡

𝑟

For cooking (heating) food with food starting with low temperature T0 and surrounded at high 

temperature (bath temperature) Th, we have the following boundary conditions:

𝑇 𝑟, 𝑜 = 𝑇0  0 ≤ 𝑟 ≤ 𝑅 , where R is the radius of the sphere.

𝑇 ≥ 𝑅, 𝑡 = 𝑇ℎ

We have:

𝐴 = 0, 𝑎𝑛𝑑 𝜆 =
𝑛𝜋

𝑅

2
where 𝑛 = 1, 2, 3, …

We then have:

𝑇 𝑟, 𝑡 = 𝑇ℎ −
2𝑅 𝑇ℎ − 𝑇0

𝜋∙𝑟
 𝑛=1

∞ −1 𝑛+1

𝑛
sin

𝑛𝜋𝑟

𝑅
∙ 𝑒−𝛼𝑛2𝜋2𝑡/𝑅2

for  0 ≤ 𝑟 ≤ 𝑅 

We define

𝜏 =
𝑅2

𝜋2∙𝛼
as the time constant.

Thus, we have:

𝑇 𝑟, 𝑡 = 𝑇ℎ −
2𝑅 𝑇ℎ − 𝑇0

𝜋∙𝑟
 𝑛=1

∞ −1 𝑛+1

𝑛
sin

𝑛𝜋𝑟

𝑅
∙ 𝑒−𝑡/𝜏

The temperature at the center of the sphere is (r = 0):

𝑇𝑐 = 𝑇ℎ − 2 𝑇ℎ − 𝑇0 ෍

𝑛=1

∞

−1 𝑛+1 ∙ 𝑒−𝑡/𝜏

We can spell out the equation with some of the initial (and deciding) terms:

𝑇𝑐 = 𝑇ℎ − 2 𝑇ℎ − 𝑇0 ൛

ൟ

𝑒−𝑡/𝜏 − 𝑒−4𝑡/𝜏 + 𝑒−9𝑡/𝜏 − 𝑒−16𝑡/𝜏 + 𝑒−25𝑡/𝜏 − 𝑒−36𝑡/𝜏 +

𝑒−49𝑡/𝜏 −. . . (1)

Where:  𝜏 =
𝑅2

𝜋2∙𝛼
and α =

k

ρc



Ch ChCh ChCh

C0 C0 C0

(a) 

Sphere

(b) 

Cylinder

(c) Plate

Fick’s Law states [21-25] that the mass transfer (i.e., diffusion) 

equation follows

𝜕2𝐶

𝜕𝑥2 =
1

𝐷

𝜕𝐶

𝜕𝑡

Where C = C (x, t) and D is the mass diffusion coefficient in 

m2/s.

In three-dimension, the mass transfer equation becomes:

𝛁 ⋅ 𝛁C =
1

𝐷

𝜕𝐶

𝜕𝑡

Where,

𝛁 ⋅ 𝛁𝑇 =
𝜕2𝐶

𝜕𝑥2
+

𝜕2𝐶

𝜕𝑦2
+

𝜕2𝐶

𝜕𝑧2
𝑓𝑜𝑟 𝐶𝑎𝑟𝑡𝑖𝑠𝑖𝑎𝑛 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

=
1

𝑟2 sin 𝜃
sin 𝜃

𝜕

𝜕𝑟
𝑟2

𝜕𝐶

𝜕𝑟
+

𝜕

𝜕𝜃
sin 𝜃

𝜕𝐶

𝜕𝜃
+

1

sin 𝜃

𝜕2𝐶

𝜕𝜑2
𝑓𝑜𝑟 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

=
1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝐶

𝜕𝑟
+

1

𝑟2

𝜕2𝐶

𝜕𝜃2
+

𝜕2𝐶

𝜕𝑧2
𝑓𝑜𝑟 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠



A sphere with azimuthal symmetry

For a sphere with azimuthal symmetry, during the mass transfer [18, 2-25], we have 
𝜕𝐶

𝜕𝜃
= 0 and 

𝜕2𝐶

𝜕𝜑2 = 0, the mass transfer equation becomes

1

𝑟2

𝜕

𝜕𝑟
𝑟2

𝜕𝐶

𝜕𝑟
=

1

𝐷

𝜕𝐶

𝜕𝑡

Applying 𝑉 = 𝑟 ∙ 𝑇 to the above equation, for 0 ≤ 𝑟 ≤ 𝑅 we get:

𝜕2𝑉

𝜕𝑟2
=

1

𝐷

𝜕𝑉

𝜕𝑡

We can decouple V(r, t) into: 

𝑉 𝑟, 𝑡 = 𝑅 𝑟 ∙ 𝑇 𝑡 

And we get:

𝜕𝑉

𝜕𝑡
= 𝑅 𝑟 ∙

𝜕𝑇

𝜕𝑡
= 𝑅 𝑟 ∙ 𝑇′ 𝑡 

And:

𝜕2𝑉

𝜕𝑟2
= 𝑇 𝑡 ∙ 𝑅” 𝑟 

Then we have:

𝑇 𝑡 ∙ 𝑅” 𝑡 =
1

𝐷
∙ 𝑅 𝑟 ∙ 𝑇′ 𝑡 

It can be rearranged into:

𝑅” 𝑟 

𝑅 𝑟 
=

1

𝐷
∙
𝑇′ 𝑡 

𝑇 𝑡 

Since the left side is only be r-dependent and the right side is only be t-dependent, and since 

they equal to each other, they must be neither r- or t- dependent. So, we have:

𝑅” 𝑟 

𝑅 𝑟 
=

1

𝐷
∙
𝑇′ 𝑡 

𝑇 𝑡 
= −𝜆

Then we have:

𝑅” + 𝜆𝑅 = 0

And 

𝑇′ + 𝜆𝐷𝑇 = 0

From the above equation, we have: 

𝑑𝑇

𝑑𝑡
= −𝜆𝐷𝑇

𝑑𝑇

𝑇
= −𝜆𝐷 ∙ 𝑑𝑡

න
0

𝑡 𝑑𝑇

𝑇
= −𝜆𝐷 ∙ න

0

𝑡

𝑑𝑡

𝑙𝑛𝑇 𝑡 – 𝑙𝑛𝑇 0 = −𝜆𝐷𝑡

𝑇 𝑡 = 𝑒−𝜆𝐷𝑡 ∙ 𝑇 0 

For 𝑅” + 𝜆𝑅 = 0

𝑑2𝑅 𝑟 

𝑑𝑟2
= −𝜆 ∙ 𝑅 𝑟 

𝑅 𝑟 = A cos 𝜆 ∙ 𝑟 + B sin 𝜆 ∙ 𝑟



Now we have:

𝑉 𝑟, 𝑡 = ෍

𝜆

A cos 𝜆 ∙ 𝑟 + B sin 𝜆 ∙ 𝑟 ∙ 𝑒−𝜆𝐷𝑡

𝑇 𝑟, 𝑡 = ෍

𝜆

A cos 𝜆 ∙ 𝑟 + B sin 𝜆 ∙ 𝑟 ∙
𝑒−𝜆𝐷𝑡

𝑟

For brining (soaking) food with food starting with low concentration C0 and surrounded at high concentration (bath concentration) Ch, we 

have the following boundary conditions:

𝐶 𝑟, 𝑜 = 𝐶0  0 ≤ 𝑟 ≤ 𝑅 , where R is the radius of the sphere.

𝐶 ≥ 𝑅, 𝑡 = 𝐶ℎ

We have:

𝐴 = 0, 𝑎𝑛𝑑 𝜆 =
𝑛𝜋

𝑅

2
where 𝑛 = 1, 2, 3, …

We then have:

𝐶 𝑟, 𝑡 = 𝐶ℎ −
2𝑅 𝐶ℎ − 𝐶0

𝜋∙𝑟
 𝑛=1

∞ −1 𝑛+1

𝑛
sin

𝑛𝜋𝑟

𝑅
∙ 𝑒−𝐷𝑛2𝜋2𝑡/𝑅2

for  0 ≤ 𝑟 ≤ 𝑅 

We define

𝜏 =
𝑅2

𝜋2∙𝐷
as the time constant.

Thus, we have:

𝐶 𝑟, 𝑡 = 𝐶ℎ −
2𝑅 𝐶ℎ − 𝐶0

𝜋∙𝑟
 𝑛=1

∞ −1 𝑛+1

𝑛
sin

𝑛𝜋𝑟

𝑅
∙ 𝑒−𝑡/𝜏

Ch

C0

R



The concentration at the center of the sphere is (r = 0):

𝐶𝑐 = 𝐶ℎ − 2 𝐶ℎ − 𝐶0 ෍

𝑛=1

∞

−1 𝑛+1 ∙ 𝑒−𝑡/𝜏

We can spell out the equation with some of the initial (and deciding) terms:

𝐶𝑐 = 𝐶ℎ − 2 𝐶ℎ − 𝐶0 ൛

ൟ

𝑒−𝑡/𝜏 − 𝑒−4𝑡/𝜏 + 𝑒−9𝑡/𝜏 − 𝑒−16𝑡/𝜏 +

𝑒−25𝑡/𝜏 − 𝑒−36𝑡/𝜏 + 𝑒−49𝑡/𝜏 −. . .

(1)

Where:  𝜏 =
𝑅2

𝜋2∙𝐷
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