DeepLPI: a novel deep learning-based model for protein-ligand interaction prediction for drug repurposing

David Wei

Princeton International School of Math and Science

Yau Science Awards 2022, North American Division, Computer Science

Project Highlights

Work

- Started in early 2021
- Worked 1000+ hours, 9 versions, 2 million data

Project Highlights

Achievement

- Continued revision after submission to Yau Science Award
- Obtained significant improvement
- Presenting the most recent results today
- Poster presentation at ISMB
- Poster presentation at IDweek
- Manuscript published on Scientific Reports Scientific Reports vol. 12: 18200 (2022) https://www.nature.com/articles/s41598-022-23014-1

Drug repurposing significantly reduces drug discovery time.

- Orange physical or *in-silico* experiments.
- Green animal and human experiments.

[1] S. Pushpakom et al, Nat. Rev. Drug Dis., vol. 18, no. 1, Jan. 2019

DTI (Drug-Target Interaction)

DTI Prediction – (*in silico*-base approach)

Traditional Models Rely on Complex and Rare Protein Spatial Information

Fast but inaccurate

- Human selecting features

	FNN	SVM	RF	KNN
StaticF	0.687 ± 0.131	0.668 ± 0.128	0.665 ± 0.125	0.624 ± 0.120
SemiF	0.743 ± 0.124	0.704 ± 0.128	0.701 ± 0.119	0.660 ± 0.119
ECFP6	0.724 ± 0.125	0.715 ± 0.127	0.679 ± 0.128	0.669 ± 0.121
DFS8	0.707 ± 0.129	0.693 ± 0.128	0.689 ± 0.120	0.648 ± 0.120
ECFP6 + ToxF	0.731 ± 0.126	0.722 ± 0.126	0.711 ± 0.131	0.675 ± 0.122

Traditional ML model prediction precision on binding affinity MSE

Data from references [1] https://doi.org/10.1186/s13321-017-0209-z [2] https://doi.org/10.1039/C8SC00148K

Accurate but limited/rare

- 3D-Structure-Based Models
- Limited data and variation

Images taken from references [3] https://doi.org/10.3389/fgene.2020.607824 [4] https://arxiv.org/abs/1510.02855

DeepLPI model overview (best after 12 versions)

Illustrations by the presenter Predicted label

Train Data Selection

No duplicates, High Confidence Experiment, Balanced Label

All Images on this page created by the presenter

600

Data stats and processing for BindingDB dataset. Davis dataset follow a similar pre-processing and stats.

Train Data Selection On *BindingDB* dataset with DeepLPI

Molecule

Experiment Settings: Traning On *BindingDB* dataset with DeepLPI

Common Setup			
Dropout	0.3	Learning rate (LR)	0.001
Weight initialization	Kaiming		0.0001
Optimizer	Adam	LR decay rate	0.8
Batch size	256		

Loss Function = Binary Cross Entropy + L2 regularization

$$\text{Loss} = -\frac{1}{N} \sum_{i=1}^{N} [y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i)] + \underbrace{\alpha \|W\|_2^2}_{\text{L2-norm regularization}}$$

Independent Testing Results On *BindingDB* dataset with DeepLPI

All Images on this page created by the presenter

AUROC: Area under the receiver operating characteristic ACC: Accuracy, percent of value predict correctly

Independent Testing Results On *BindingDB* dataset with DeepLPI-6165

All Images on this page created by the presenter

AUROC	Mol Unseen	Protein Unseen	Both Unseen	None Unseen
Control	0.782	0.862	0.781	0.942
Mol Masked	0.625 (0.003)	0.726 (0.004)	0.737 (0.037)	0.726 (0.003)
Seq Masked	0.407 (0.008)	0.727 (0.005)	0.403 (0.046)	0.713 (0.007)

Independent Testing Results

On Davis dataset with DeepLPI

All Images on this page created by the presenter

Performance Comparison

Model	AUROC	Sensitivity	Specificity	
DeepLPI	0.94	0.72	0.96	
DeepCDA	0.88	0.79	0.80	
DeepDTA	0.89	0.77	0.86	
Unseen Testsets Combined				
This work	0.79	0.68	0.77	
DeepCDA	0.45	0.00	1.00	
Comparing model performance on BindingDB				

Model	AUROC	Sensitivity	Specificity	
DeepLPI	0.923	0.930	0.730	
DeepCDA	0.912	0.766	0.896	
DeepDTA	0.909	0.865	0.795	
DTITR	0.932			
Comparing model performance on Davis				

	R ²	MSE	
DeepLPI	0.70	0.196	
DeepCDA	0.74	0.208	
DeepDTA	0.75	0.215	
DTITR	0.77	0.192	
Comparing model performance on Davis, Regression			

	AUROC	Sensitivity	Specificity
DeepLPI	0.610	0.538	0.576
DeepCDA	0.400	0.000	1.000

Comparing model performance on Covid-19 data

Limitations and Future Work

Advanced Testing Methods

- Significantly different training and testing sets, distributionwise
- Quantifying the difference
- Molecular Scaffold
- Protein Similarity
- Other metrics

More on repurposing drugs

- Potential adverse effects
- Due to new interactions between the drug and the proposed disease target, or a new group of population.
- Interactions with traditional drugs on the new disease to give adverse effects

Acknowledgements

Prof. Yue Zhang, School of Medicine, University of Utah

Dr. Xiang Gong, PRISMS

Prof. Shuyun Dong, School of Pharmacy, University of Utah

Key References

[1] S. Pushpakom et al., "Drug repurposing: progress, challenges and recommendations," Nature Reviews Drug Discovery, vol. 18, no. 1, Jan. 2019, doi: 10.1038/nrd.2018.168. [2] O. J. Wouters, M. McKee, and J. Luyten, "Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018," JAMA, vol. 323, Nucleic Acids Research, vol. 35, no. Database, Jan. 2007, doi: 10.1093/nar/gk1999. no. 9, Mar. 2020, doi: 10.1001/jama.2020.1166. [10] T. He, M. Heidemever, F. Ban, A. Cherkasov, and M. Ester, "SimBoost: a readacross approach for predicting drug-target binding affinities using gradient boosting machines," Journal of Cheminformatics, vol. 9, no. 1, Dec. 2017, doi: 10.1186/s13321-017-0209-z. [11] R. Özçelik, H. Öztürk, A. Özgür, and E. Ozkirimli, "ChemBoost: A Chemical Language Based Approach for Protein – Ligand Binding Affinity Prediction," Molecular Informatics, vol. 40, no. 5, May 2021, doi: 10.1002/minf.202000212. [12] P.-W. Hu, K. C. C. Chan, and Z.-H. You, "Large-scale prediction of drug-target interactions from deep representations," Jul. 2016. doi: 10.1109/IJCNN.2016.7727339.2014. [13] H. Öztürk, A. Özgür, and E. Ozkirimli, "DeepDTA: Deep drug-target binding affinity prediction," in Bioinformatics, Sep. 2018, vol. 34, no. 17, pp. i821-i829. doi: 10.1093/bioinformatics/bty593. [14] I. Wallach, M. Dzamba, and A. Heifets, "AtomNet: A Deep Convolutional Neural [28] J. Tang et al., "Making Sense of Large-Scale Kinase Inhibitor Bioactivity Data Network for Bioactivity Prediction in Structure-based Drug Discovery," Oct. 2015. [15] S. Wang et al., "SE-OnionNet: A Convolution Neural Network for Protein-Ligand Binding Affinity Prediction," Frontiers in Genetics, vol. 11, Feb. 2021, doi: 10.3389/fgene.2020.607824. [20] S. Jaeger, S. Fulle, and S. Turk, "Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition."

[21] T. Bepler and B. Berger, "Learning the protein language: Evolution, structure,

and function," Cell Systems, vol. 12, no. 6, Jun. 2021, doi: 10.1016/j.cels.2021.05.017. [22] T. Liu, Y. Lin, X. Wen, R. N. Jorissen, and M. K. Gilson, "BindingDB: a webaccessible database of experimentally determined protein-ligand binding affinities," [23] D. Rogers and M. Hahn, "Extended-Connectivity Fingerprints," Journal of Chemical Information and Modeling, vol. 50, no. 5, May 2010, doi: 10.1021/ci100050t.

[24] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," Dec. 2015.

[25] K. He, X. Zhang, S. Ren, and J. Sun, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification," Feb. 2015.

[26] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," Dec.

[27] M. I. Davis et al., "Comprehensive analysis of kinase inhibitor selectivity," Nature Biotechnology, vol. 29, no. 11, Nov. 2011, doi: 10.1038/nbt.1990.

Sets: A Comparative and Integrative Analysis," Journal of Chemical Information and Modeling, vol. 54, no. 3, Mar. 2014, doi: 10.1021/ci400709d.

[29] K. Abbasi, P. Razzaghi, A. Poso, M. Amanlou, J. B. Ghasemi, and A. Masoudi-Nejad, "DeepCDA: deep cross-domain compound-protein affinity prediction through LSTM and convolutional neural networks," Bioinformatics, vol. 36, no. 17, Nov. 2020, doi: 10.1093/bioinformatics/btaa544.

Thanks for listening!

Independent Testing Results On *BindingDB* dataset with DeepLPI-6165

All Images on this page created by the presenter

Independent Testing Results

On *Davis* dataset with DeepLPI-6165

All Images on this page created by the presenter

Model Method

ResNet Based CNN Module

-- Main Information layer, to extract information from vector

Model Method

https://towardsdatascience.com/illustrated-guide-to-lstmsand-gru-s-a-step-by-step-explanation-44e9eb85bf21

https://towardsdatascience.com/convolutional-layers-vsfully-connected-layers-364f05ab460b

Evaluation Metrics for Classification (binding/non-binding)

AUROC

- Area Under the Receiver Operating Characteristic Curve
- Measures the probability that a randomly selected "1" will have a higher predicted probability of being a "1"

Confusion Matrix

- Sensitivity (Recall) = TP / (TP + FN)
- Specificity = TN / (TN + FP)
- PPV (Precision) = TP / (TP + FP)
- NPV = TN / (FN + TN)

Result – Datasets Overview Model Performance Test BindingDB 2 Public Training Datasets • 2.3 million experiment data, general purpose BindingDB Davis • 36,111 data w/ required label after quality screening • Kd <= 100 nM : Strong Binding; Kd > 100 nM, Non-Binding 3 Models' Comparison • Kd < 10000 nM: Weak Binding; Kd > 10000 nM, Non-Binding DeepPLA DeepPLA DeepCDA Davis -6165 -100 Best Literature Model • 30,056 experiment data, general purpose **Transfer-ability Test** 24,548 non-duplicated data • Kd <= 100 nM : Strong Binding; Kd > 100 nM, Non-Binding BindingDB BindingDB • Kd < 10000 nM: Weak Binding; Kd > 10000 nM, Non-Binding COVID Davis Data COVID-19 **Performance Metric** (Classification) 850 experiment data entry • Binary: active or inactive AUROC Specificity, Sensitivity, PPV, NPV

Results:

External Test Dataset of COVID-19 Stats

Description:

A large XChem crystallographic fragment screen against SARS-CoV-2 main protease at high resolution. From MIT AiCures.

Entry:

879 Drug entries

Target: SARS-CoV-2 3CL Protease

Data sources:

Diamond Light Source: <u>https://www.diamond.ac.uk/covid-19/for-scientists/Main-protease-</u> <u>structure-and-XChem.html</u>

MIT AI Cure: https://www.aicures.mit.edu/data

Therapeutic Data Commons: https://tdcommons.ai/single_pred_tasks/hts/#sars-cov-2-3clprotease-diamond

	Drug_ID	Drug	Y
0	0	Oc1ccccc1CNc1nc2ccccc2[nH]1	1
1	1	CC(=O)NCCc1c[nH]c2ccc(F)cc12	1
2	2	NC(=O)[C@H]1CCC[C@H]1c1ccsc1	1
3	3	CN1CCCc2ccc(S(N)(=O)=O)cc21	1
4	4	CC(=O)Nc1ccc(Oc2ncccn2)cc1	1
875	875	CC(C)c1ccc(NC(=O)N2CCOCC2)cc1	0
876	876	CN(CC(=O)O)C(=O)c1ccccn1	0
877	877	CN1CCN(C(=O)c2ccc(F)c(F)c2)CC1	0
878	878	O=C(c1c(F)cccc1F)N1CCCCCC1	0
879	879	Fc1cccnc1NCC1CCOCC1	0

