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Abstract 

The substantial cost of new drug research and development has consistently posed a huge burden for 

both pharmaceutical companies and patients. In order to lower the expenditure and development failure 

rate, repurposing existing and approved drugs by identifying interactions between drug molecules and 

target proteins based on computational methods have gained growing attention. Here, I propose 

DeepLPI, a novel deep learning-based model that mainly consists of ResNet-based 1-dimensional 

convolutional neural network (1D CNN) and bi-directional long short-term memory network (biLSTM), 

to establish an end-to-end framework for protein-ligand interaction prediction. First, the raw drug 

molecular sequences and target protein sequences are encoded into dense vector representations, which 

go through two ResNet-based 1D CNN modules to derive features, respectively. The extracted feature 

vectors are concatenated and further fed into the biLSTM network, followed by the MLP module to 

finally predict protein-ligand interaction. The well-known BindingDB and Davis datasets are 

downloaded for training and testing the DeepLPI model. DeepLPI is also applied on a COVID-19 

dataset for externally evaluating the prediction ability of DeepLPI. To benchmark the model, DeepLPI 

is compared with the baseline methods and it is observed that DeepLPI outperformed these methods, 

suggesting the high accuracy of the DeepLPI towards protein-ligand interaction prediction. The high 

prediction performance of DeepLPI on the different datasets displayed its high capability of protein-

ligand interaction in generalization, demonstrating that DeepLPI has the potential to pinpoint new drug-

target interactions and to find better destinations for proven drugs. 
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Introduction 

Introducing a new drug to the market has been characterized to be risky, time-consuming, and 

costly[1][2]. Drug discovery is the first phase of drug research and development (R&D) that starts with 

identifying targets of an unmet disease, such as proteins, followed by creating and optimizing a 

promising compound that can interact with the targets efficiently and safely. This step usually involves 

hundreds and thousands of compounds, yet only about 8% of which drug leads can enter the phase of 

the in vitro and in vivo preclinical research [3]. In order to shorten the duration and improve the success 

rate in the phase of drug discovery, drug repurposing has become a hotspot of new drug research and 

development over the past few years [1][4], which intends to find an effective cure for a disease from a 

large amount of existing and approved drugs that were developed for other purposes [1]. For example, 

prednisone was originally developed for treating inflammatory diseases, but it is likely to be effective 

against Parkinson’s disease as well [5]. In the midst of all the drug repurposing methods, in silico 

computational-based methods to screen pharmaceutical compound libraries and identify drug-target 

interactions (DTIs) or ligand-protein interactions (LPI) have gained increasing attention and made 

significant breakthroughs due to the development of high-performance computational architectures and 

advances in machine learning methods.  

Over the last decade, various machine learning-based models have been developed to identify LPI 

from millions of ligands and proteins. One type of model utilized 3D structures of proteins and drug 

molecules aiming at capturing interaction details in predictions of the drug-target binding affinity [6], 

such as Atomnet [7] and SE-OnionNet [8]. However, insufficient 3D protein structure data limited the 

practicability, generalizability, and accuracy [9, 10, 11]. To exploit the vastly available protein 

sequencing data, a new model calculates human-selected features and predicts drug-target interactions 

with conventional machine learning [12, 13]. The disadvantages of these methods are that they require 

much domain knowledge and possibly lead to a loss of information about raw protein-ligand 

interactions due to limited features. Deep learning-based models can automatically learn the highly 

complex and abstract level of features from large-scale datasets without extensive manual creation. Yet 

the recent development considers only simple encoding of input letter information [14, 15, 16]. Without 

the contextual information, this type of model may not capture the complex protein features and thus 
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have limited accuracy and generalizability.  

Here, I propose DeepLPI, an innovative deep learning-based model to predict protein-ligand 

interaction using the simple formats of raw protein 1D sequences and 1D ligands (i.e., drug molecular) 

SMILES (Simplified Molecular Input Line Entry System) strings as inputs, rather than manual-

generated features or complex 3D protein structures. To capture contextual information in the sequence 

data, I first respectively employ Natural Language Processing-inspired pretrained models of Mol2Vec 

[17] and ProSE [18] to embed drug SMILES strings and protein FASTA sequences as numeric vectors. 

These embedded numeric vectors are then fed into two blocks, each of them consisting of two modules 

termed head convolutional module and ResNet-based convolutional neural network (CNN) module, to 

encode proteins and drug sequences, respectively. The encoded representations are concatenated into a 

vector and fed into a bi-directional long short-term memory (biLSTM) layer, followed by three fully 

connected layers. The BindingDB [19] dataset is used to train the DeepLPI model, adjust the 

hyperparameters, and independently evaluate the performance of making LPI classification predictions. 

The model is then applied on Davis [20] dataset to do regression and transformed to predict on a 

COVID-19 3CL Protease [21, 22] dataset for externally assessing the prediction ability of DeepLPI. To 

benchmark the model, the regression-adapted version of DeepLPI is compared with the start-of-the-art 

methods of DeepDTA [15], DeepCDA [16], and DTITR [27] towards protein-ligand interaction on 

Davis dataset. The prediction performance is quantitively represented in terms of 𝑅𝑅2 (higher is better), 

and Mean Square Error (𝑀𝑀𝑀𝑀𝑀𝑀) (lower is better). The high performance of the DeepLPI towards protein-

ligand interaction prediction suggests that the model has the potential to accurately identify protein-

ligand interaction and hence, promote the new drug development. 

Dataset and data preprocessing 

BindingDB [19] dataset is used to train and evaluate the DeepLPI model. Then Davis [20] dataset 

is used and the COVID-19 3C-like Protease dataset from Diamond Light Source [21, 22] is used for 

further evaluation and comparison. All datasets are publicly accessible. The BindingDB is a continually 

updating database that contains 2,407,235 experimentally identified binding affinities between 8,130 

target proteins and 1,036,498small drug molecules up to June 2022. First, the following criteria is 

applied to compile the dataset for the development of the model: (1) excluding binding interactions with 
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multichain protein complexes because it is not capable of identifying which chain of the protein interacts 

with the molecular; (2) retaining binding interactions only represented by 𝐾𝐾𝑑𝑑 value and it means that 

other measurements in the form of  𝐼𝐼𝐼𝐼50  or 𝐾𝐾𝑖𝑖  values are removed; (3) keeping common drug 

molecules and target proteins occurring in at least three and six interactions in the entire dataset [9], 

respectively; (4) removing data with invalid 𝐾𝐾𝑑𝑑  values and removing duplicated data entries. For 

example, some data used”>” and “< “in the labeled values to indicate ranges, and therefore they are 

directly excluded from the subsequent analysis. Additionally, there are some zeros in the values which 

should not appear based on the definition of binding affinity measurement of 𝐾𝐾𝑑𝑑. Thus, they are treated 

as invalid values and are simply removed. As a result, a total of 62,825 interactions with 21,148 drug 

molecules and 1,944  protein targets are finally used in developing the model. (5) As a binary 

classification problem in this study, label 1 is used to represent a pair of protein and ligand being active 

if their corresponding 𝐾𝐾𝑑𝑑  value is less than 100  nM and label 0  is used to represent a pair being 

inactive if their 𝐾𝐾𝑑𝑑 value is greater or equal to 100 nM since a greater dissociation constant means 

weaker binding. In this case, 73.5% of data are labeled active, and 26.5% of data are labeled inactive 

(Fig. 1a and 1b). 

 
Figure 1. Distribution of BindingDB data used to develop the DeepLPI model. (a) Distribution of the 

𝑝𝑝𝐾𝐾𝑑𝑑  values and the threshold for determining active/inactive. (b) distribution interaction in binary 

classes 

 

Four different subsets are built to evaluate the performance of the model (Fig. 2). The test set 

includes the “Drug Unseen” testing set, which consists of drugs not seen in the training set; the “Protein 

Unseen” testing set consists of proteins not seen in the training set; the “Both Unseen” testing set 

consists of drugs and proteins neither seen in the training set; and the “None Unseen” testing set consists 

both drugs and proteins seen in training, but not the drug-protein pairs. Randomly selected are 15 
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different ligands and 6 different sequences as test molecules and proteins and used to divide the data 

sets. 2500 data from the remaining 51,961 data are then selected as the “None Unseen” test set.  

 

Figure 2. Division of the dataset into training and special testing sets. 

The total test set consists of 21% of the entire dataset, and the remaining 79% will be used for 

training. To optimize hyperparameters, another 1000 data is further allocated from the training set for 

validation during the training phase, and the rest (i.e., 77% of all data) are used to train the model. The 

AUROC, accuracy, and confusion matrix are calculated. 

The reason for choosing 𝐾𝐾𝑑𝑑 rather than other binding measurements is to better transfer our model 

to the Davis dataset, which only reports 𝐾𝐾𝑑𝑑  values of the kinase protein family and the relevant 

inhibitors. the same protocol is used to obtain the class label as mentioned above. The Davis dataset 

was referenced from the Davis work [20] and downloaded from the URL therein. The dataset is used 

by several other models, including DeepDTA, DeepCDA, SimBoost, and DTITR, to evaluate the 

performance. Here it is used as an evaluation dataset which helps to compare the DeepLPI model with 

other state-of-art drug DTI models. It contained duplicated data entries where the drug-protein pairs are 

the same, but the binding affinity values are different, potentially due to the experimental conditions. 

Only one entry is kept in each group of duplicates. After the treatment, there were 24,548 interaction 

data entries. The data is split into training, validation, and testing sets according to the same method 

described above.  

To find effective drugs for SARS-CoV-2, the model is applied to a COVID-19 dataset where 879 

small molecule drugs were tested on the SARS-COV-2 3C-like protease. The experiment measured 

EC50 results. For classification, label 1 is used to indicate drug-protease active if EC50 is less than 30 

nM [23] or 0 representing inactivity. The data is retrieved from a large XChem crystallographic 

fragment screen against SARS-CoV-2 main protease at high resolution from MIT AiCures. [22] Among 

those data, 78 are active according to the threshold.  
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Model Design 

Overview of DeepLPI model 

The proposed DeepLPI consists of eight modules (Fig. 3), including two embedding modules, two 

head modules, two ResNet-based CNN modules, one bi-directional LSTM (biLSTM) module, and one 

multilayer perceptron module (MLP). DeepLPI employs raw molecular SMILES strings and protein 

sequences as inputs, representing numeric vectors using the pretrained models of Mol2Vec[17] and 

ProSE[18], respectively. The embedded vectors for the drug SMILES and the protein sequences are 

then fed into the respective head modules and ResNet-based CNN modules to extract features. The 

feature vectors for the inputs of drug molecules and protein targets are concatenated, pooled (average-

pooling operation), and then encoded by a bi-LSTM layer. Subsequently, the encoded vectors are finally 

fed into an MLP module, and the final output is activated through a sigmoid function for binary 

classification to predict active/inactive labels. 

Embedding module  

To utilize the raw drug molecular SMILES string and protein sequence as inputs to the DeepLPI model, 

they are first encoded into numeric vector representations using the pre-trained embedding models 

Mol2Vec[17] and ProSE[18], respectively. Mol2Vec is an unsupervised deep learning-based approach 

to convert a molecule into a numeric vector representation. Inspired by natural language processing 

(NLP) techniques, Mol2Vec regards the molecular substructures obtained by the Morgan identifier [23] 

as “words” and the compound as “sentences”, and then encodes them into dense vector representations 

based on a so-called corpus of compounds. On the other hand, the ProSE is a masked language-based 

model, using biLSTM networks to capture contextual features in protein FASTA sequence [18], which 

are represented into numeric vectors that encode protein structural such as structural information and 

functional properties. It first translates a protein sequence into a list of specific alphabets (as a 

“sentence”), which map similar amino acids (as “words”) into close numbers. Then, the ProSE model 

encodes the words into numeric vectors. The pre-trained Mol2Vec and ProSE are utilized to obtain 

vector representations with a fixed length for the drug molecular compound and protein, respectively.  
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Figure 3. The overview of the DeepLPI model architecture. 

 

Head module and ResNet-based CNN module  

After the embedding, the drug molecular SMILES string vector and protein sequence vector are 

fed into the head modules separately with the same network architecture. The head module contained 

the following layers: 1D convolutional, batch normalization, nonlinear transformation (with the 

rectified linear unit, i.e., ReLU activation), dropout, and max-pooling.  

Subsequently, two ResNet-based CNN modules are connected to the corresponding head module 

to encode the input information further. Suppose 𝑥𝑥 is the input into a ResNet-based block. The output 

of stacked layers is called residual, denoted as 𝐹𝐹(𝑥𝑥), then ResNet-based block output is calculated with 
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equation 𝐻𝐻(𝑥𝑥) = 𝐹𝐹(𝑥𝑥) + 𝑥𝑥 [24]. Similar to the head module, the two ResNet-based CNN modules had 

the same network architecture. Specifically, each ResNet-based CNN module consists of three 

consecutive ResNet-based blocks. Each block comprises two branches, where the right branch is known 

as a “shortcut connection,” and the left branch is known as a “residual network.” The “shortcut 

connection” has two options: for the first of the three blocks, it is a convolution layer, and for the later 

two blocks, it is exactly the input 𝑥𝑥. “Residual network” contains several stacked layers, including a 

1D convolutional layer, a batch normalization layer, a ReLU layer, a dropout layer, another 1D 

convolutional layer, and one more batch normalization layer in sequence. The module will output the 

sum of values that comes out from two branches. 

biLSTM module and MLP module 

In the biLSTM module, the outputs are concatenate, i.e., the outputs of features extracted by the 

two ResNet-based CNN modules, followed by an average-pooling layer. After pooling, the 

concatenated side is directly sent into the units separately. For instance, in the 6165 frameworks, 300-

dim molecular embedding and 6165-dim protein embedding translate into 75-dim and 1541-dim 

separately and then concrete and pool into a 1076-dim matrix. Each unit in the LSTM consists of one 

of the 1076 inputs, which assumed the matrix as a “time series.” The biLSTM, which stands for 

bidirectional long short-term memory, can learn long-term dependency from inputs. This network 

processes the input twice, once from the beginning to the end and once the reverse way, and thus can 

balance the molecular and protein information. Finally, the outputs on both sides of biLSTM are 

combined as the output vector.  

In the MLP module, flattened is the output vector of the biLSTM and it is fed into three stacks of 

consecutive fully connected (FC) layers, each followed by batch normalize a Relu activation layer, and 

a dropout layer. Finally, the output is passed through a sigmoid function for binary classification to 

predict 1/0 labels. Specially, the model is also adapted to doing regression in order to compare with 

other methods. In the regression cases, the sigmoid activation function will change from the last to the 

second consecutive FC layer. 
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Loss function  

When treating the prediction as a classification task that predicts whether the drug and protein have 

a strong or weak binding, the loss function of n pairs of molecular SMILES strings and protein 

sequences was given by: 

Loss = − 1
𝑁𝑁
∑ [𝑦𝑦𝑖𝑖 ⋅ log(𝑦𝑦�𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) ⋅ log(1 − 𝑦𝑦�𝑖𝑖)]𝑁𝑁
𝑖𝑖=1�����������������������������

BCE loss

+ 𝛼𝛼‖𝑊𝑊‖22�����
L2−norm regularization

    (1) 

Where 𝑦𝑦𝑖𝑖 ∈ {0,1} is the class label representing whether or not the binding interaction of an input 

pair of protein and ligand sequences 𝑖𝑖. 𝑦𝑦�𝑖𝑖 is the probability of interaction prediction for the input pair 

𝑖𝑖 by the model, 𝑦𝑦�𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

, 𝑥𝑥 is the output of the MLP module of the model. 𝑊𝑊 is 

the trainable weight matrix in the model. 𝛼𝛼 is the decay rate, and set to be 0.8 in this study. 

 In other cases, when adapting the model to the regression task, which predicts the 𝑝𝑝𝐾𝐾𝑑𝑑 value 

without changing it into a 0/1 label, the loss function of n pairs of molecular SMILES strings and protein 

sequences is also changed to:  

Loss = − 1
𝑁𝑁
∑ [𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖]2𝑁𝑁
𝑖𝑖=1�������������
MSE loss

+ 𝛼𝛼‖𝑊𝑊‖22�����
L2−norm regularization

  (2) 

Parameters Setting 

Kaiming Initialization Method is used to initialize DeepLPI network weights [25]. The Adam 

optimizer [26] is also employed with default parameters of 𝛽𝛽1 = 0.9  and 𝛽𝛽2 = 0.999  as an 

optimization algorithm to train the model. Furthermore, a batch size of 256 is used and a learning rate 

0.001 is used with a decay rate of 0.8 by the ReduceLROnPlateau [25] scheduler. The maximum 

number of epochs sets to 1000, and the evaluation result on each epoch is recorded on Tensorboard. All 

settings for the parameters implemented in the DeepLPI model are demonstrated in Table S1. It should 

be noted that the regressional adaptation version of the model has slightly different parameter sets. It’s 

because the difference between activation and loss functions makes the probability of overfitting 

different. The parameter values for the pre-trained Mol2Vec and ProSE are set to default. The method 

yielded vector representations with a fixed length of 300 for the drug molecules and two lengthes of 

100 and 6,165 for the target proteins. The 6,165-element representation for protein were tested to 

outperform the 100-element representation, and thus in the article only the 6,165-element result is 
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reported. Generally, the hyperparameters of the DeepLPI is manually tune and the model is optimized 

such as choosing the number of blocks empirically in the ResNet-based module on the Binding DB 

database, so the Davis dataset’s performance can partially reflect the transferability of the model. 

Model Evaluation 

For the binary prediction, it is desired to calculate the AUROC and Accuracy to evaluate the 

performance of the model. The confusion matrix is also calculated and shown to further evaluate the 

performance of the model in specific situations. AUROC refers to the area under the receiver operating 

characteristic curve, which describes the model’s performance in different thresholds by showing the 

relation between sensitivity and specificity when increasing the threshold, 

Sensitivity  =  
TP

TP + FN
 

Specificity =
TN

TN + FP
 

In the above equations, TP represents true positives, FP represents false positives, TN represents 

true negatives, and FN represents false negatives. Sensitivity indicates the probability of having a 

correct positive prediction in all cases labelled true. Specificity indicates the probability of having a 

correct negative prediction in all cases labelled false. 

Experiment setup 

Model training was done in Aliyun Cloud Computing. The node CPU used Intel(R) Xeon(R) 

Platinum 8163 (2.50GHz). An Nvidia Tesla T4 GPU is supplied. The model is implemented using the 

PyTorch library (version 1.8.1). The source code of training and evaluating DeepLPI and the 

requirements are available on GitHub (https://github.com/David-BominWei/DeepLPI). 

https://github.com/David-BominWei/DeepLPI
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Results 

Evaluation on BindingDB Dataset 

I first report the result of the model trained on the BindingDB dataset. This represents the core 

performance of the DeepLPI because the hyperparameters are tuned based on this dataset. The model’s 

training stopped at 750 epochs when the learning rate decreased to the minimum of 0.00001. Training 

after this point would not be able to improve the result significantly and may lead to overfitting.  

The model is applied to the test sets, and the AUROC, Accuracy, and Confusion Matrix is then 

calculated to evaluate the model’s performance on the four test sets (Fig. 4a): “Molecule unseen” (Fig. 

4b), “Protein unseen” (Fig. 4c), “None Unseen” (Fig. 4d), “Both Unseen” (Fig. 4e). The best accuracy 

of 0.91 and best AUROC 0.942 are achieved at the “None Unseen” test set, which means the model 

has an optimistic performance on classification when both the molecule and protein have occurred in 

the training set. The AUROC results of “Molecule unseen” and “Protein unseen” reach 0.783 and 

0.862, respectively, and show that the model has a better performance when only the disease is unknown, 

which suits the purpose of the model to repurpose existing drugs for an unknown disease. Especially, 

the confusion matrix shows a very high specificity, which means the model has a very good ability to 

screen out the inactive drugs which cannot cure the disease. This could help expedite  drug discovery 

in wet lab and clinical tests by reducing the list of candidate drugs needed for experiments. 
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Figure 4. The prediction performance of the DeepLPI model on BindingDB dataset. (a) The color 

coding of the testing set division scheme. Accuracy, AUROC and confusion matrix are shown on testing 

set of (b) “Molecule Unseen” (c) “Protein Unseen” (d) “None Unseen” (e) “Both Unseen” 

 

In order to demonstrate the performance of the model, the performance of the model was compared 

with the recently published DeepCDA [16] model and the popular baseline model DeepDTA [15] on 

classification tasks. DTITR model is not included in this comparison because its encoding module 

cannot process phosphorus. it was noticed that the predicted labels from the DeepCDA model on all 

“unseen” test sets were all zero, indicated by the sensitivity (0.0) and specificity (1.0) (Table 1), and 

cannot make meaningful predictions. It is also found that the DeepLPI model had relatively high 

generalizability in making predictions for “unseen” test sets. The prediction performance on the “None 

Unseen” test set, where both molecules and proteins were individually used in training, were 

summarized in the Table 1. The results demonstrated that the DeepLPI scored higher AUROC by 0.060 

and 0.053 than the DeepCDA and DeepDTA, respectively. It showed that the DeepLPI can predict in 

the BindingDB dataset with higher ability of clasificiation. 

 

、 
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Table 1. Comparing Performance of DeepLPI, DeepCDA and DeepDTA on the “None Unseen” test set 
from the BindingDB dataset. 

Model AUROC Sensitivity Specificity 

DeepLPI 0.942 0.483 0.910 

DeepCDA 0.882 0.792 0.804 

DeepDTA 0.889 0.772 0.862 

Unseen Testsets Combined 

This work 0.790 0.684 0.773 

DeepCDA 0.448 0.000 1.0 

Transferred Evaluation on Davis dataset 

We further applied the trained DeepLPI above in the Davis dataset and compared its performance in 

both classification and regression tasks with the reported results from the DeepCDA and DTITR. The 

classification training on the Davis dataset was stopped after 850 epochs. The DeepLPI model obtained 

an AUROC of 0.923, an accuracy of 0.851, a sensitivity of 0.93, and a specificity of 0.73. In the Table 

2, the performance metrics of the model were compared with DeepCDA, DeepDTA, and DTITR on the 

testing set from the Davis dataset. The testing set is randomly split from the Davis dataset, which 

includes 16% of the data. 

Table 2. Comparing Performance of DeepLPI, DeepCDA and DeepDTA on the independent testing set 
from the Davis dataset  

Model AUROC Sensitivity Specificity 

DeepLPI 0.923 0.930 0.730 

DeepCDA 0.912 0.766 0.896 

DeepDTA 0.909 0.865 0.795 

DTITR 0.932 --- --- 

The DeepLPI scored higher AUROC values by 0.011 and 0.014 than the DeepCDA and DeepDTA, 

respectively, and slightly lower than DTITR’s score of 0.932. This result showed the transferability of 

the DeepLPI model. Given that all models’ AUROC is above 0.9, the differences in AUROC 

performance are not big enough to indicate a superior model. Since the hyperparameters in the DeepLPI 

were tuned in the BindingDB dataset and then directly applied to the Davis dataset, the DeepLPI 

performance in the Davis dataset should be further improved if the DeepLPI model was trained in the 
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Davis dataset like both the DeepDTA and DTITR did.  

 

Figure 5. DeepLPI performance on the Davis dataset, (a) comparing in regression the predicted pKd 

value and the true value and (b) the confusion matrix in classification 

 The model regression performances on the Davis dataset were also compared and summarized in 

the Table 3.. The result shows that the DeepLPI obtained an 𝑅𝑅2 of 0.70, which.  means the Pearson 

correlation between prediction and true values is better than 0.8. The mean squared error (MSE) in 

theDeepLPI was 0.196, which was slightly better than the DeepDTA’s 0.215 and DeepCDA’s 0.208, 

and similar to the DTITR’s 0.192. These result further demonstrated the transferability of the DeepLPI 

model because it was first designed for classification tasks instead of regression tasks, and the model’s 

hyperparameters were optimized based on the classification task in the BindingDB. In the Davis dataset, 

there existed large amounts of interactions valued 10000 nM, indicating a non-binding experiment 

measurement between the pair of drug and protein. The unbalanced distribution may cause the wrong 

estimation in the model, which decrease the 𝑅𝑅2 value. 

Table 3. Comparing regression performance of DeepLPI, DeepCDA and DeepDTA on the internal 
independent testing set from the Davis data   

𝑹𝑹𝟐𝟐 MSE 

DeepLPI 0.70 0.196 

DeepCDA 0.74 0.208 

DeepDTA 0.75 0.215 

DTITR 0.77 0.192 
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Evaluation on COVID-19 

I further applied the model trained on the BindingDB dataset directly on the Covid-19 dataset without 

fine-tuning. The DeepLPI outperformed DeepCDA with an AUROC of 0.610 (Table 4). The high 

prediction performance on the Covid-19 dataset suggested that the DeepLPI could be the candidate 

method to discover effective drugs for SARS-CoV-2. However, the low PPV and specificity of the 

DeepLPI arised from the high false positive rates and indicated the need for further upgrades in the 

future works. 

 

Table 4. Comparison of DeepLPI and DeepCDA on transferring BindingDB trained model to COVID-
19.  

AUROC Sensitivity Specificity PPV NPV 

DeepLPI 0.610 0.538 0.576 0.110 0.928 

DeepCDA 0.400 0.000 1.000 nan 0.911 

 

Discussion 

In the work, DeepLPI mode was successfully built to predict DTI in classification tasks using 1D 

sequence data from protein and drug molecules. First utilized are the pre-trained embedding methods 

called Mol2Vec and ProSE to encode the raw drug molecular SMILES strings and target protein 

sequences into dense vector representations. Then, the encoded dense vector representations are fed 

separately into head modules and ResNet-based modules to extract features, where these modules are 

based on 1D CNN. The extracted feature vectors are concatenated and fed into the biLSTM network, 

further followed by the MLP module to finally predict binary active or inactive based on Kd affinity 

labeled data. Three datasets of BindingDB, Davis and COVID-19 were used to evaluate the DeepLPI 

model, and the results demonstrate that the model has a high performance on the prediction. The model 

is also adapted to do the regression on the Davis dataset, and the result is compatible with current 

methods. For the recently published DTITR [27], which employed transformer and cross attentions for 

ligand-protein binding affinity prediction, it is compared with the DeepLPI model. It is found that they 
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used a very different data preprocessing procedure and adjusted the hyperparameters on a different 

database. Specifically, the DTITR dealt with drug information encoding using a dictionary that didn’t 

include “P” for phosphorus element and treated the letters in SMILES representations case-sensitively. 

In this case, this model cannot be adapted to the BindingDB database and compared with DeepLPI 

straightforwardly on equal basis. As a temporary solution, the DTITR and DeepLPI methods are 

compared on the regression task and on the DTITR-specified Davis dataset. Although the results show 

DTITR has slightly better performance, DeepLPI’s result is also compatible (DTITR AUROC 0.932, 

MSE 0.192, DeepLPI AUROC 0.923, MSE 0.196). Future study is guaranteed to develop a unified data 

preprocessing procedure applicable to DTITR and DeepLPI.  

Unlike the methods to pre-define features that rely heavily on domain knowledge or to represent 

sequences simply using a sparse encoding approach, the DeepLPI applied pre-trained embedding 

models of Mol2Vec[17] and ProSE[18] to encode the raw drug SMILES string and target protein 

sequences, respectively. These semantic context embedding models are trained using a huge dataset to 

represent sequence data in dense vectors, considering the structure information of molecules and target 

proteins to ensure that they are highly informative and efficient for feature embeddings. The language 

model-based contextual embedding is assumed to be the primary reason DeepLPI outperforms 

DeepCDA and DeepDTA. It is admired that there exists a variety of embedding methods to encode drug 

compounds and protein sequences. the method used a protein language model (ProSE) for embedding, 

which outperformed a couple of baseline language models [28, 29]. In the future study, it is desirable 

to further compare the performance of ProSE and other novel protein language models. 1D CNN is used 

in the DeepLPI model to retain the sequential correlation, and a ResNet-based module is adopted in the 

DeepLPI. Traditional feed-forward CNN may lose useful information as the design grows deeper. 

Nevertheless, ResNet-based CNN can mitigate this drawback by developing a “shortcut connection” 

for the network. Consequently, data inputted into the ResNet-based CNN module can be added with the 

residual of the network to alleviate the loss of information. The biLSTM is employed in the DeepLPI 

model, which can capture long-term dependencies of the sequence and equally encode the input 

sequence from two sides of it. Compared to the classical LSTM, the biLSTM enables the use of the two 

hidden states in each LSTM memory block to preserve information from both the past and the future, 

which means keeping the memory of protein when processing drugs and keeping the memory of drugs 

when processing the proteins. 
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 In the experiments, it is noticed that the performance of DeepLPI is not uniform on different 

proteins: some common biological features of those proteins might exist, such as the sequences or the 

spatial structures. Detailed analysis of the shared features of the proteins requires a deeper 

understanding of the protein-drug interaction and can potentially explain why the model behaves well 

on some of the proteins. Such analysis would be useful to improve the model upon generalizing the 

results later.  

 The DeepLPI model may help in speeding up COVID-19 drug research. As of today, people are 

still searching for an effective and safe cure for Covid-19 patients. The current widely-used combination 

treatment with hydroxychloroquine and azithromycin has not been proven to be satisfactory, and there 

are some research efforts in using computational, especially deep neural network, techniques for 

searching the effective repurposed drugs. The model can be useful in speeding up the drug search and 

potentially increasing the success rate because the training data fed into the model is not limited to the 

protein structural information. 

 Even though the model has been successfully built to predict active/inactive interaction with high 

accuracy, it has certain limitations. There is still room for improvement regarding prediction accuracy, 

especially when the model is applied to external datasets. To rigorously evaluate model prediction power, 

a control test set had better be significantly different from the training set in distributions. This work’s 

“unseen” test sets only differ in molecular and protein length distributions. Meanwhile, other splitting 

methods exist, such as those characterized by molecular scaffold or more quantitatively protein 

similarity. Comparing with alternative differential data splitting approaches is out of the scope of this 

study, but the impact will be investigated of different data splitting approaches in future work. From a 

broader perspective, the study of repurposing drugs should not be limited only to the binding affinities. 

Researchers should also pay attention to the possibility of potential adverse effects of using the 

repurposed drug. This can result from new interactions between the drug and the proposed disease target, 

or because the drug is administered to a new population group. Sometimes the repurposed drug could 

interact with traditional drugs on the new disease, and adverse effects might also arise from such 

unexpected interactions. Deep learning methods could also be used in studies on these aspects for better 

safety. 
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Appendix 

In August 2022, the major progress of this project formed a manuscript which was submitted to the 

journal Scientific Reports. In October 2022, the manuscript was fortunately accepted for publication. 

During this process, various model optimizations was continually tried out but failed. Very recently, a 

breakthrough was made which significantly raised the model’s prediction accuracy, and this report 

submitted to Regeneron Science Talent Search reflected the most recent breakthrough, with updated 

analysis and illustrations. The outdated figures in the published manuscript were reserved in this 

Appendix section for the reviewers’ reference.  

 

Figure A1 (Outdated DeepLPI model) The loss and AUROC score during the DeepLPI training on the 

BindingDB Kd dataset. (a) Loss scores for training and validation. (b) AUROC scores for training and 

validation 
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Figure A2. (Outdated DeepLPI model) The prediction performance of the final DeepLPI model on 

BindingDB dataset. (a) The ROC curve and the determined optimal threshold using Youden’s J 

statistics. (b) Confusion matrix based on the optimal threshold. (c) – (e) Confusion matrix and 

performance metrics on the three “unseen” drug/protein testsets: (c) Molecule unseen (d) Protein 

unseen and (e) None seen.   

 

Figure A3. (Outdated DeepLPI model) The loss and AUROC score during the DeepLPI training on 

Davis dataset (a) Loss scores for training and validation. (b) AUROC scores for training and 

validation 
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Figure A4. (Outdated DeepLPI model) The prediction performance of the final DeepLPI model Davis 

dataset. (a) The ROC curve and the determined optimal threshold. (b) Confusion matrix based on the 

optimal threshold. (c) – (e) Confusion matrix and performance metrics on the three unseen 

drug/protein testsets: (c) Molecule unseen (d) Protein unseen and (e) None seen.
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