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What is knot theory?

• The study of mathematical knots and how to distinguish one knot
from another.

• Has applications in post-quantum encryption algorithms.
See “Quantum money from knots” (Shor et al.)

• Knots also have applications in biology. DNA reproduction
requires enzymes called topoisomerases to unknot the two DNA
strands formed by replication, transcription, and recombination;
certain chemotherapy drugs work by halting this untangling
process, which requires knowing what transformations untie
certain knots.

• Knots are also applicable to synthetic chemistry. Bonding the
same atoms in the shape of different knots creates completely
different substances, often with unique properties.
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What is a knot?

• Formally, a knot is an embedding of S1 into R3. Two knots are
equivalent if and only if there exists a continuous deformation
from one knot to the other.

• Informally, we can think of knots as a rope: knot the rope, glue the
ends of the rope together, and then make the rope infinitely thin.

Pictured here is the figure-eight knot:
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The Crossing Number

• Each of these 2D representations of a knot is a knot projection.
• Every point in the projection where multiple strands intersect is
called a crossing.

• We can define the crossing number of knot K, denoted as c(K), as
the minimum # of crossings in a projection of the knot.

• If two knots having different crossing numbers, they must be the
same knot. The two diagrams below are both projections of the
same knot.
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Knots Classified by c(K)

We can tabulate knots based on their crossing number. However, note
that there are multiple knots K with c(K) = x for all x ≥ 5.
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n-crossing diagrams and cn(K)

c(K) distinguishes some knots, but not all.
Are there other ways to distinguish them? Yes!
cn(K) for n = 3, 4, 5, ... gives infinitely many.
Note: c2(K) = c(K).

• A standard crossing in a knot diagram is when one strand passes over another.

• An n-crossing projection is a knot diagram where at each crossing n strands
intersect, with each strand bisecting the crossing.

• Every knot has an n-crossing projection for all n ≥ 2. One can then define
cn(K) as the smallest number of crossings an n-crossing projection of K can
contain.
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n-crossing diagrams and cn(K)

c(K) distinguishes some knots, but not all.
Are there other ways to distinguish them? Yes!
cn(K) for n = 3, 4, 5, ... gives infinitely many.
Note: c2(K) = c(K).

⇐⇒

The figure shows a 3-crossing projection of the figure-eight knot with only two crossings. In
fact, c3(41) = 2. A green strand is the bottom strand and a red strand is the upper strand.

N. Hagedorn Inequalities for cn(K) March 2023 6 / 8



Inequalites for the n-crossing number

Computing cn(K) is very difficult. We need to find relationships
between the n-crossing numbers to aid their computation. A few have
been found:

• cn+2(K) ≤ cn(K)

• c3(K) ≤ c2(K)− 1 (for non-trivial knot K)
Colin Adams (Williams College), 2013

• c4(K) ≤ c2(K)− 1 (for non-trivial knot K)
Michael Landry (Washington University), 2014

• c5(K) ≤ c3(K)− 1 (for non-trivial knot K)
Colin Adams (Williams College), Jim Hoste (Pitzer College), Martin Palmer
(Universität Bonn), 2019

• My Theorem: c9(K) ≤ c3(K)− 2 (for knot K that is not the
trivial, trefoil, or figure-eight knot)
(Hagedorn, 2023)

Please refer to my research paper for the proof of my theorem.
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Implications

• The c9(K) ≤ c3(K)− 2 inequality is the fifth known inequality
between n-crossing numbers and is the first known inequality with
an n-crossing number for n > 5.

• A major conjecture in the study of n-crossing diagrams states the
following: cm(K) ≤ cn(K) for all m ≥ n. My work provides
further evidence in support of the conjecture.

• Using my results, I found the 9-crossing number for six knots
whose 9-crossing number was previously unknown.

• My inequality cannot be improved as there exist knots K such
that c3(K) = c9(K)− 2. For example, the c9(51) = c3(51)− 2 and
c9(62) = c3(62)− 2.
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