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1. Introduction 

There have been many developments in artificial intelligence (AI) technologies in the past decade 

that have revolutionized the way people live and shaped society. However, AI relies on large amounts of 

data and can make mistakes that seem trivial to humans. For example, self-driving cars can misrecognize 

obstacles on the road which can lead to fatal accidents. In contrast, a dog knows to stay away from 

realistic street art of a ditch even though it has never seen it before. A better understanding of natural 

intelligence is critical to advancing the next generation of AI. There have been efforts to study animal 

intelligence as the first step to understand natural intelligence, which is a complex and challenging 

problem. 

In this project, we are interested in studying how a dog behaves and reacts to different stimuli in its 

surroundings. Understanding dog behavior could provide useful insights in understanding animal 

intelligence as well as human intelligence. Dogs have five senses: vision, hearing, smell, touch, and taste. 

Compared to a human, their sense of hearing is 4 times as powerful and their sense of smell is about 

100,000 times as powerful [5]. Dogs also have a wider angle of vision than humans, but cannot always 

see objects in focus. Additionally, the average dog has the intelligence of roughly a 2.5 year old human 

baby, but is even more adept at reading and understanding people than chimpanzees and human babies 

[6]. Studies have also shown the brightest dogs seem capable of learning hundreds of words. Dogs are 

capable of expressing emotions such as happiness, anger, fear, and jealousy, and are also capable of 

experiencing depression and anxiety, just like humans [3].  

Existing studies on modeling dog behavior and reaction to visual stimuli have been reported for the 

purpose of developing robotic canine companions. A recent study by Ehsani et al. used a deep learning 

model to predict a dog’s behavior using only visual information perceived by the dog. Their model was 

able to predict the dog’s reaction and estimate walkable surfaces [1]. A study by Marks et al. on 

understanding animal behavior showed that animals are capable of displaying behaviors linked to stress, 

fear, curiosity, stress, anxiety, discomfort, and more, and subtle changes in behavior can be 

demonstrated through the animals’ interactions with others [3]. Gregory Berns et al. studied dogs’ brain 

activity in response to human hand signals using fMRI scans [4]. The study showed that dogs tend to pay 

close attention to human signals and display brain activity only when they saw familiar hand signals for 

rewards. Other work performed by researchers used cameras and wearable devices to monitor a dog’s 

behavior [12, 13]. 
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Previous work has shown interesting results. Most of them rely on visual information. In this work, 

we plan to study how a dog reacts multi-modality stimuli including visual and auditory information. By 

collecting video and audio data from a dog’s perspective, we create a database of egocentric visual and 

audio stimuli that represents what a dog sees and hears. We use a deep learning approach and propose 

an extended Convolutional Neural Network (eCNN) model to learn the association between the dog’s 

reaction and the visual and audio stimuli perceived by the dog.  

This work can be applied to create effective ways of training dogs for various services. Currently, dog 

training is done from a human trainer’s perspective. However, it would be more effective to train dogs 

from their own perspective. With the known association between a dog’s surroundings and its reactions, 

we can design environments customized to the dog’s reactions and perform interventions according to 

their natural behavior. Finally, as dogs display many human-like qualities, we hope to gain insights into 

human intelligence by understanding the behavior and intelligence of dogs. 

 

2. Methodology 

We conducted this research by analyzing visual and auditory information from the environment 

perceived by a dog. 

2.1 Data Collection 

Data collection focuses on collecting the visual and audio stimuli in the dog’s environment. A family 

pet, which is a Golden Retriever, was brought to different environments including parks and 

neighborhood streets. As Figure 1 shows, a GoPro camera is attached to the harness that the dog wears 

to capture what the dog sees and hears (Fig. 1(a)). The video stream captured by this GoPro camera is 

referred to as the dog-view video. At the same time, a hand-held camera is used by a person to record 

(a) Camera with microphone 

mounted on dog harness 

(b) Hand-held camera captures videos of 

dog movements and surroundings 

Figure 1. Data collection (Left: dog view; Right: human view) 
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the dog’s movements and its surroundings. The video stream captured by the hand-held camera is 

referred to as the human-view video. When recording the videos, both cameras were turned on at 

roughly the same time. An audible start signal, e.g. “take one”, was used to synchronize the recordings 

made by the two cameras. A total of 22 pairs of videos were collected.  

2.2 Data Preparation 

Three types of data, image frames, audio signals, and dog actions, were extracted from the dog-view 

and human-view videos. Image information was extracted from the dog-view videos. When the dog was 

walking or running, the dog-view camera often recorded extra noise from the leash. Therefore, we used 

audio signals extracted from the hand-held camera for its better audio quality to replace audio signals 

from the dog-view camera. Dog actions were manually labeled using the images from the human-view 

videos. 

 

To establish the correspondence between the dog’s actions and its visual and audio stimuli, we 

established the time correspondence between the image frames from the dog’s view and the image 

frames from the human’s view. Assume 𝐹𝑃𝑆𝐷 and 𝐹𝑃𝑆𝐻 are the frame rates (i.e. frames per second) of 

the dog-view camera and the human-view camera respectively. Assume 𝑇𝐷0 and 𝑇𝐻0 are the start times 

when the start signals of the dog-view camera and the human-view camera respectively. Given the dog-

view image frame 𝑓𝑟𝐷, the corresponding human-view image frame 𝑓𝑟𝐻  is 

    𝑓𝑟𝐻 = (
𝑓𝑟𝐷

𝐹𝑃𝑆𝐷
− 𝑇𝐷0 + 𝑇𝐻0) ∙ 𝐹𝑃𝑆𝐻                                                   (1) 

Once the correspondence between the dog-view and human-view image frames are established, the 

correspondence between the dog’s actions and the visual and audio stimuli is known. 

As Figure 3 shows, there are 4 types of actions defined: Sit, Stand, Walk, and Smell. When the dog 

starts an action, the dog tends to continue the action for a period of time. Therefore, the image frames 

were only labeled when the dog changed its actions, and the same action is assigned to the subsequent 

image frames until a new action is presented. 

(a) Dog view image (b) Human view image 

Figure 2. Audio signals, dog view images, and human view images are aligned by time. 
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2.3 Data Analysis 

Given the visual and audio stimuli a dog senses and its corresponding actions, we want to 

understand how the dog reacts to what it sees and hears. For example, what makes a sitting dog start 

walking? We propose an extended Convolutional Neural Network (eCNN) to learn the association 

between visual and audio stimuli and the corresponding dog actions. Compared to the CNN model, 

which only takes images as input variables, the eCNN model is able to explore data from multiple 

modalities, including images, motion, and audio. Our problem is formulated as a multi-class 

classification problem, where we use image, audio, and motion information to classify the dog’s action 

into one of 4 classes: Sit, Stand, Walk, and Smell, shown in Figure 3. 

2.3.1 Input Features 

Image frames of size 672x378 pixels were extracted from the dog-view videos to capture what the 

dog sees. Each image is composed of three color channels: red, green, and blue. For faster computation, 

all image frames were resized to 151x85 pixels without losing useful visual information. The frame rate 

of the dog-view camera is 30.05 FPS and consecutive image frames are highly similar. Therefore, we 

performed down sampling over time and selected one in every 5 frames to include in the dataset. 

      

The audio signals extracted from the human-view videos capture what the dog hears. We want to 

analyze the frequency content of the audio signal. Short-Time Fourier Transform (STFT) was used to 

decompose the audio signal into individual frequency components. STFT is defined as 

Figure 4. Sample images captured by the dog-view camera in the dataset. 

Figure 3. Images showing 4 actions of the dog: Sit, Stand, Walk, and Smell. 
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𝑆(𝑚, 𝜔) = ∑ 𝑥(𝑛)𝑤(𝑛 − 𝑚𝐻)𝑒−𝑖𝜔𝑛                                                         (2)

∞

𝑛=−∞

 

where 𝑥(𝑛) represents the audio signal at time 𝑛, 𝑚 is the index of the moving window, 𝐻 is the hop 

length, 𝑤(𝑛) is the windowing function, and 𝜔 is the frequency. Since the STFT 𝑆(𝑚, 𝜔) is a complex 

function, we take the magnitude |𝑆(𝑚, 𝜔)| as the input feature to the eCNN model. Figure 4 shows an 

example spectrogram of an audio signal produced by STFT. 

 In our experiment, we used the hop length of 1/90th second and a window size of 1 second. 

Figure 5 shows the resulting spectrogram (right) of a recorded audio signal (left) produced by STFT. 

 

To capture the sequential nature of the visual data, we included motion information as the third 

type of input feature. To compute image motion, we use the template matching method [11] to 

estimate the motion vectors of image blocks, i.e. how an image block moves from one frame to the next. 

Define 𝐼𝑡  as the image frame at time 𝑡. As Figure 6 shows, for an image block centered around pixel 

(𝑥0, 𝑦0), template matching finds the new block location (𝑥0 + 𝑚𝑥, 𝑦0 + 𝑚𝑦) in the next image frame 

𝐼𝑡+1 such that the difference between the two image blocks measured by sum of squared error is 

minimized. A motion vector 𝑚𝑣(𝑥0 , 𝑦0) = (𝑑𝑥, 𝑑𝑦) is found as 

(𝑑𝑥, 𝑑𝑦) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑥={−𝐷,…𝐷}

𝑘𝑦=(−𝐷,…𝐷}

 ∑ 𝐼𝑡+1(𝑥0 + 𝑖 + 𝑘𝑥, 𝑦0 + 𝑗 + 𝑘𝑦) − 𝐼𝑡 (𝑥0 + 𝑖, 𝑦0 + 𝑗)

𝑖,𝑗

              (3) 

 

 

 

Figure 5. Spectrogram of audio signal produced by STFT. (Left: audio signal; Right: spectrogram) 
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To make the method more computationally efficient, we first constructed image pyramids, sequences of 

resized images at different resolutions {𝐼𝑡
𝑙: 𝑙 = 0, 1, … , 𝐿 − 1} (Figure 7) with a scaling factor 2. Template 

matching is first performed on the lowest resolution image. Assume at level 𝑙 a motion vector (𝑑𝑥𝑙 , 𝑑𝑦𝑙) 

is found for an image block centered around pixel (𝑥0, 𝑦0). Then the motion vector at level 𝑙 − 1, 

(𝑑𝑥𝑙−1, 𝑑𝑦𝑙−1), at pixel location (2𝑥0, 2𝑦0) is found as 

(𝑑𝑥𝑙−1, 𝑑𝑦𝑙−1) 

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑥={2𝑑𝑥𝑙−𝐷,…,2𝑑𝑥𝑙+𝐷}

𝑘𝑦={2𝑑𝑦𝑙−𝐷,…,2𝑑𝑦𝑙+𝐷}

 ∑ 𝐼𝑡+1(2𝑥0 + 𝑖 + 𝑘𝑥, 2𝑦0 + 𝑗 + 𝑘𝑦) − 𝐼𝑡(2𝑥0 + 𝑖, 2𝑦0 + 𝑗)             

𝑖,𝑗

(4) 

In general, image motion can be caused by both camera movements and objects moving in the scene. 

Since we are interested in object motion, we want to remove the motion caused by camera movements. 

We use the global average of motion vectors to represent the motion caused by camera movements and 

subtract the global motion from the motion vectors. 

𝑚𝑣̅̅ ̅̅ (𝑥, 𝑦) = (𝑑𝑥(𝑥, 𝑦) − 𝑑𝑥𝑔 , 𝑑𝑥(𝑥, 𝑦) − 𝑑𝑦𝑔)  

Figure 6. Motion vector of an image block. 

Figure 7. Image pyramid with 3 levels. 

Level 0 

Level 1 

Level 2 
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𝑑𝑥𝑔 =
1

𝑁
∑ 𝑑𝑥(𝑥, 𝑦),   

𝑥,𝑦

𝑑𝑦𝑔 =
1

𝑁
∑ 𝑑𝑦(𝑥, 𝑦) 

𝑥,𝑦

                                            (5) 

In our experiment, we constructed image pyramids with 4 levels. Image blocks of 5x5 pixels were 

used in template matching. For computational efficiency, centers of image blocks are 32 pixels apart in 

the original resolution. A resulting motion field is shown in Figure 8.  

 

Figure 8. Motion field. 

Figure 9. Extended Convolutional Neural Network (eCNN) model. 

 

STFT 

dense 

hidden 

layer 
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2.3.2 Extended Convolutional Neural Network (eCNN) 

To utilize images, motion, and audio, we propose an extended CNN (eCNN) model to take multi-

modal data as input, as shown in Figure 9. In the eCNN model, the first input type is an image. The image 

goes through a convolution layer, which is composed of 32 filters with kernel size 7x7 and stride 1. Batch 

normalization is then applied to the convolved image over the color channels, and a max pooling 

operation with a pool size of 3x3 is performed. The resulting output is flattened and fed into the input 

layer of the eCNN model. The second input type is a motion field. The magnitudes of the motion vectors 

go through a max pooling layer with a pool size of 9x3 before they are fed into the input layer. The third 

input type is an audio signal. First we apply STFT to the audio signal to get a vector of the frequency 

domain representation. Batch normalization is performed on its magnitude spectrum and the resulting 

output is fed into the input layer. The input layer feeds the three types of input data into a dense hidden 

layer with 30 nodes and a sigmoid activation function. The dense layer is connected to an output layer of 

4 nodes with a softmax activation function, corresponding to the one-hot encoding of each of the 4 

classes: Sit, Stand, Walk, and Smell. TensorFlow Keras was used to implement the eCNN. The Adam 

algorithm was selected for optimization. We also used a dropout of 20% on the input and output of the 

dense layer to reduce overfitting.  

2.3.3 Train and Test 

The dataset of images, motion, audio, and ground truth labels were randomly split into training, 

validation, and testing sets. 70% of the data which included 3505 samples were used for training. 10% of 

the data which included 458 samples were used for validation. The remaining 20% of the data which 

included 954 samples were used for testing. When training the eCNN model, to prevent the 

optimization algorithm from getting stuck in local minima, we adopted mini-batches at two levels. First, 

the training samples were divided into a number of batches, referred to as “hyper-batches”. Second, 

when each hyper-batch was used for training, mini-batches within the hyper-batch were used for 

optimization in TensorFlow. Similarly, training was run over epochs at two levels. First, when each 

hyper-batch was used for training, TensorFlow ran optimization over multiple epochs. Second, we ran 

training on all hyper-batches over multiple hyper-epochs. Model performance over the number of 

hyper-batches and hyper-epochs was evaluated. 

To evaluate the model’s performance, we computed the overall prediction accuracy as well as a 

confusion matrix to assess the prediction accuracy in each class. We use {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)} 

to represent the set of data samples, where 𝑥𝑖  is the input feature and 𝑦𝑖 is the ground truth class label, 

i.e. 𝑦𝑖 ∈ {𝑠𝑖𝑡, 𝑠𝑡𝑎𝑛𝑑, 𝑤𝑎𝑙𝑘, 𝑠𝑚𝑒𝑙𝑙}. We use �̂�𝑖 to represent the predicted class label for input 𝑥𝑖. The 

accuracy of class 𝐶 (𝐶 = 𝑠𝑖𝑡, 𝑠𝑡𝑎𝑛𝑑, 𝑤𝑎𝑙𝑘, 𝑠𝑚𝑒𝑙𝑙) is computed as 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐶) =
|{𝑖: 𝑦𝑖 = 𝐶, �̂�𝑖 = 𝐶}|

|{𝑖: 𝑦𝑖 = 𝐶}|
                                                        (6) 

|S| represents the number of samples (cardinality) of set S. The overall accuracy is defined as the 

average accuracy across all classes. 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

4
(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑠𝑖𝑡) + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑠𝑡𝑎𝑛𝑑) + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑤𝑎𝑙𝑘) + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑠𝑚𝑒𝑙𝑙))       (7) 

A confusion matrix is defined as a two dimensional matrix [𝑀𝑟,𝑐] , where the rows 

𝑟 (𝑟 ∈ {𝑠𝑖𝑡, 𝑠𝑡𝑎𝑛𝑑, 𝑤𝑎𝑙𝑘, 𝑠𝑚𝑒𝑙𝑙})  represent the ground truth class labels and the columns 𝑐 (𝑐 ∈

{𝑠𝑖𝑡, 𝑠𝑡𝑎𝑛𝑑, 𝑤𝑎𝑙𝑘, 𝑠𝑚𝑒𝑙𝑙})  represent the predicted class labels. A value in row 𝑟  and column 𝑐 

represents the number of data samples that have a ground truth class 𝑟 and were predicted as class 𝑐. 

𝑀𝑟,𝑐 = |{𝑖: 𝑦𝑖 = 𝑟, �̂�𝑖 = 𝑐}|                                                               (8) 

 

3. Results and Discussion 

 We trained the eCNN model on a training set of 3505 samples and a validation set of 458 samples. 

The model was tested on a testing set of 954 samples. The training set includes 338 samples labeled as 

Sit, 521 samples labeled as Stand, 1574 samples labeled as Walk, and 1072 samples labeled as Smell. 

The validation set includes 55 samples labeled as Sit, 65 samples labeled as Stand, 207 samples labeled 

as Walk, and 131 samples labeled as Smell. The testing set includes 102 samples labeled as Sit, 149 

samples labeled as Stand, 427 samples labeled as Walk, and 276 samples labeled as Smell. The 

experiments were run with 1 hyper-batch and 4 hyper-batches over 40 hyper-epochs. The best overall 

accuracy on the validation set was used to select the best number of hyper-epochs and number of 

hyper-batches. Training was run on a Windows machine with 24.0 GB RAM and 2.3 GHz AMD Ryzen 5 

processor. One round of training took approximately 7 hours. 

 Table 1 shows the performance of the model over 40 hyper-epochs and 4 hyper-batches selected by 

validation. On the validation dataset, the model achieved an overall accuracy of 79.47%. It correctly 

predicted 88.00% of samples labeled as Sit, 72.73% of samples labeled as Stand, 78.95% of samples 

labeled as Walk, and 78.20% of samples labeled as Smell. On the testing dataset, the model achieved an 

overall accuracy of 79.02%. It correctly predicted 84.21% of samples labeled as Sit, 78.87% of samples 

labeled as Stand, 78.66% of samples labeled as Walk, and 74.33% of samples labeled as Smell. The 

performance of the eCNN model on the validation and testing sets were very similar, showing no 

obvious overfitting. The model achieved highest accuracy for class Sit, but performance was relatively 

similar over all classes. 

 The confusion matrix on the testing set is as follows: 
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Table 1. Experimental results. 

 
Training Validation Testing 

Number of Samples 3505 458 954 

Number of Samples: class Sit 338 55 102 

Number of Samples: class Stand 521 65 149 

Number of Samples: class Walk 1574 207 427 

Number of Samples: class Smell 1072 131 276 

Overall Accuracy 94.34% 79.47% 79.02% 

Accuracy of class Sit 99.11% 88.00% 84.21% 

Accuracy of class Stand 95.59% 72.73% 78.87% 

Accuracy of class Walk 96.19% 78.95% 78.66% 

Accuracy of class Smell 86.47% 78.20% 74.33% 

 

 To evaluate the effects of multiple hyper-epochs and hyper-batches on the performance of the 

model, we plotted the overall accuracy over different numbers of hyper-epochs and hyper-batches in 

Figure 10. With 1 batch, the training reached optimal performance at around 20 hyper-epochs. With 4 

batches, the training reached optimal performance much earlier at around 5 hyper-epochs. In both tests, 

the model’s performance on validation and testing sets were very similar, suggesting no obvious 

overfitting. However, with 4 batches, there is a relatively large difference between the training 

Figure 10.   Overall performance of model over different hyper-epochs (Left: 1 batch used; Right: 4 

batches used. Blue: training; Orange: validation; Green: test) 
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performance and the validation performance. This was likely caused by the smaller number of data 

samples in each batch fed into the training algorithm. The performance of each class over different 

hyper-epochs is shown in Figure 11. Although each class had a different number of training samples, the 

model’s performance was consistent across all classes. 

 

 Figure 12 shows the 32 convolution filters of size 7x7 that were learned by the model. They 

represent various color patterns. Many filters have a color difference along a diagonal, which suggests 

that the dog pays more attention and reacts to color differences in its field of view.  

Figure 11. Performance on each class over different hyper-epochs (Upper left: Sit; 

Upper right: Stand, Lower left: Walk, Lower right: Smell) 

Figure 12. 32 convolutional filters with size 7x7 learned by the eCNN model. 
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 To understand the role each sensing modality plays in predicting the dog’s actions, we first displayed 

the weights on the input nodes learned by the model which correspond to image, audio, and motion 

features respectively. For each input node corresponding to image features, we average the magnitude 

of the weights of the dense layer nodes connected to that input node. The average weight is calculated 

for all input notes corresponding to image features and is shown in Figure 13. Similarly, the average 

weights for audio and motion features are calculated and shown in Figure 13 as well. We observe that 

for the audio features, some low frequency features are weighted more, which suggests that the dog 

likely reacts more to the low frequency components in what it hears. 

 In addition, we trained the model separately using only image, only audio, and only motion 

information. 10 hyper-epochs and 4 hyper-batches were used in the tests, shown in Figure 14. The 

optimal performance of the model trained with each type of single-modal input is shown in Table 2. The 

Figure 13. Average weights on image, audio, and motion features in dense layer. 

Figure 14. Overall performance of model using single-modal data (Upper-left: 

used only images; Upper-right: used only audio; Bottom: used only image) 
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model achieved the highest overall accuracy when using only audio as input, suggesting that audio plays 

a significant role in the dog’s behavior. Training using only motion information had a much lower 

performance than the multi-modal input, which is likely due to inadequate background motion 

correction. 

 

 

 Image only Audio only Motion only 

Overall 
Accuracy 

78.81% 86.74% 43.66% 

 

 

4. Conclusion and Future Work 

 In this work, we proposed a research framework to understand dog behavior. We collected video 

and audio data from a dog’s egocentric view and, through deep learning, learned the association 

between the dog’s reaction and the visual and audio stimuli perceived by the dog. We proposed an 

extended Convolutional Neural Network (eCNN) to utilize multi-modality features of images, audio, and 

motion information. The model achieved promising results with an overall prediction accuracy of 

79.02%. We observed that the dog reacts strongly to various color patterns and color contrasts in its 

field of view. It also reacts more to some low frequency components in what it hears. These findings can 

offer useful information when designing effective ways to train dogs for various services, such as 

companionship and rescue work. 

 In the future, we plan to extend our work in the following directions. First, we plan to add infrared 

sensors to study if and how dogs react to temperature. Second, we plan to test sequence models such 

as Recurrent Neural Networks for potential performance improvements. Third, we plan to extend data 

collection to study how a dog reacts to unfamiliar situations, human voices, other dogs barking, music, 

and much more. Lastly, we plan to extend the study to different dogs and understand the general and 

individual behavior of dogs. 

  

Table 2. Optimal performance of model trained with 

only image, only audio, and only motion information. 
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