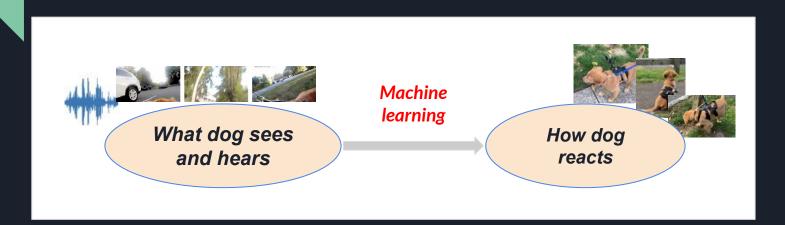
Understanding Dog Behavior through Visual and Aural Sensing Using Deep Learning

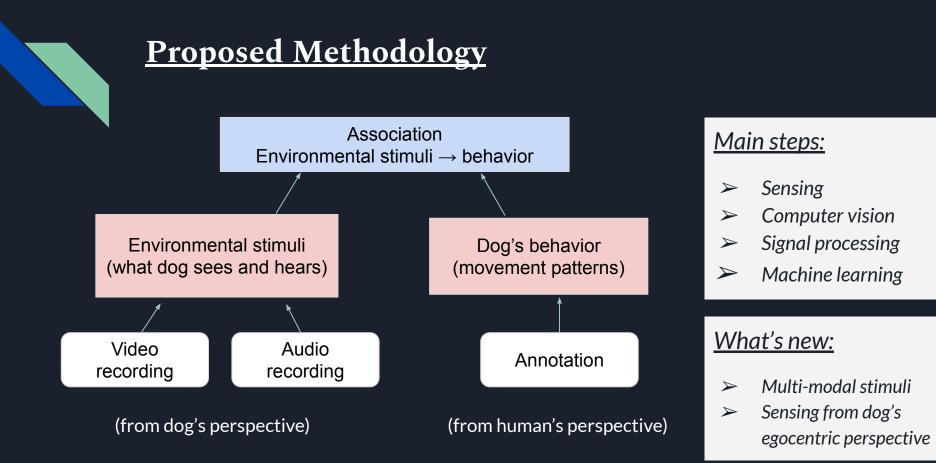
Amy Lin Princeton High School Princeton, NJ March 2023

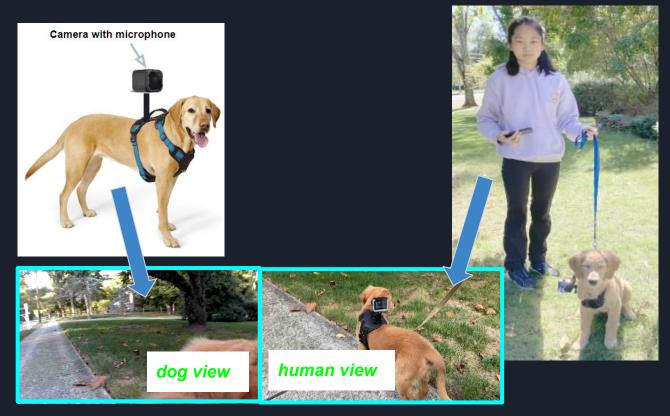
Research Motivation


- Artificial vs. natural intelligence
 - Al's dependency on large amounts of data,
 - Al tends to make mistakes trivial to humans
- What can we learn from animal intelligence?
- How do dogs behave and respond to their environments?
- New idea: Use ML to Model Dog Behavior through Visual and Aural Sensing

Objectives

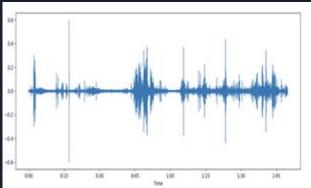
- Understand dog behavior and reaction to different environmental stimuli using machine learning
 - Visual stimuli
 - Auditory stimuli
 - Stimuli perceived from dog's egocentric perspective
- Potential applications
 - Help develop new AI technologies (e.g. robot dog)
 - Create new ways of working with dogs: training environment customized to dog's natural reaction
 - Dog training: service dogs, military dogs, police dogs, rescue dogs, companion dogs
 - Understanding animal intelligence provides insights into human intelligence

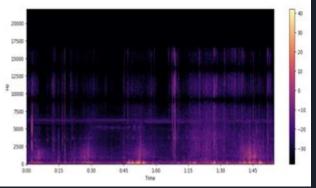




Proposed Methodology

Learn and model the <u>association</u> between dog's perceived <u>visual and audio stimuli</u> and dog's <u>reaction</u>



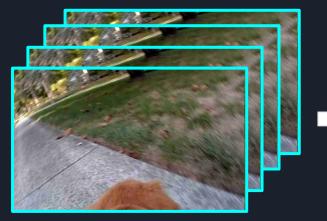


Proposed Methodology: Audio Signal Analysis

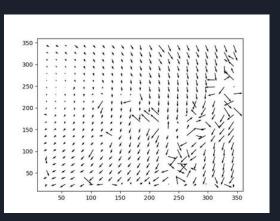
Audio signal: Short-Term Fourier Transform (STFT)

(STFT spectrogram)

(Audio signal)

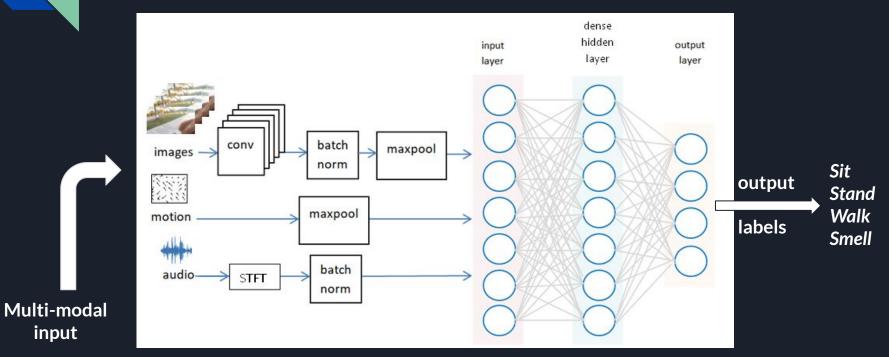


Proposed Methodology: Image Motion Analysis


Image motion: motion estimation by template matching

Motion

estimation


(image frame)

(motion field)

input

Proposed Methodology: eCNN model

(extended Convolutional Neural Network model)

<u>Experiments: Setup</u>

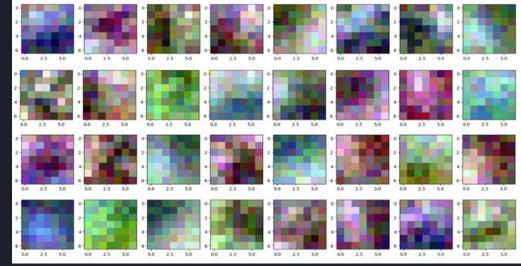
- Data split into training set (70%), validation set (10%), testing set (20%)
- eCNN model structure:
 - Image input: 32 convolution filters of size $7x7 \rightarrow$ batch normalization over color channels \rightarrow max pooling with pool size 3x3
 - $\circ \quad \text{Audio input: STFT} \rightarrow \text{batch normalization}$
 - Motion input: max pooling with pool size 9x3
- Train eCNN model over 40 hyper-epochs and 4 hyper-batches
- Performance on validation set used to select hyperparameters
- Train eCNN model on single-modal inputs (image only, audio only, motion only) to evaluate how single-modal information is perceived by dog

Overall prediction accuracy: 79.02%

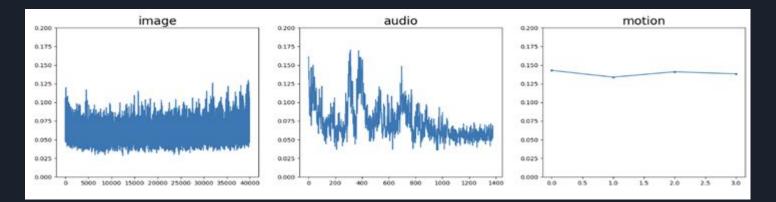
	Training	Validation	Testing
Number of Samples	3505	458	954
Number of Samples: class Sit	338	55	102
Number of Samples: class Stand	521	65	149
Number of Samples: class Walk	1574	207	427
Number of Samples: class Smell	1072	131	276
Overall Accuracy	94.34%	79.47%	79.02%
Accuracy of class Sit	99.11%	88.00%	84.21%
Accuracy of class Stand	95.59%	72.73%	78.87%
Accuracy of class Walk	96.19%	78.95%	78.66%
Accuracy of class Smell	86.47%	78.20%	7 <mark>4.</mark> 33%

Confusion matrix on testing set

Prediction Ground truth	sit	stand	walk	smell
sit	80	5	9	1
stand	3	112	23	4
walk	15	26	328	48
smell	4	6	67	223


 Observation: use of hyper-batches achieves optimal performance in less number of epochs

(Testing hyperparameters: number of hyper-batches, number of hyper-epochs)


Observation: dog reacts to various color patterns and color contrasts!

(convolution filters learned by eCNN)

Observation: dog reacts strongly to some low frequency components in what it hears!

(average weights on image inputs, audio inputs, and motion inputs)

Conclusion

- We proposed an eCNN model to learn and model the association between a dog's perceived visual and audio stimuli and the dog's behavior
- eCNN model showed promising results in predicting dog's behavior
- Dog seems to react to various color patterns and color contrasts, as well as some low frequency components in the sound it hears
- The insights gained in this project can potentially create new ways of training service dogs for rescue work, companionship, and more

<u>Future Work</u>

- Add infrared sensors to study if and how dogs react to temperature
- Test sequence models such as Recurrent Neural Networks for potential performance improvements
- Extend data collection to study how a dog reacts to unfamiliar situations, human voices, other dogs barking, music, and much more
- Extend the study to different dogs and understand the general and individual behavior of dogs