Understanding Dog Behavior through Visual and Aural Sensing Using Deep Learning

AMY LIN

Princeton High School
Princeton, N]
MARCH 2023

Research Motivation

- Artificial vs. natural intelligence
- Al's dependency on large amounts of data,
- Al tends to make mistakes trivial to humans
- What can we learn from animal intelligence?
- How do dogs behave and respond to their environments?
- New idea: Use ML to Model Dog Behavior through Visual and Aural Sensing

Objectives

- Understand dog behavior and reaction to different environmental stimuli using machine learning
- Visual stimuli
- Auditory stimuli
- Stimuli perceived from dog's egocentric perspective

- Potential applications
- Help develop new Al technologies (e.g. robot dog)
- Create new ways of working with dogs: training environment customized to dog's natural reaction
- Dog training: service dogs, military dogs, police dogs, rescue dogs, companion dogs
- Understanding animal intelligence provides insights into human
 intelligence

Proposed Methodology

Learn and model the association between dog's perceived visual and audio stimuli and dog's reaction

Proposed Methodology

Proposed Methodology: Data collection

Proposed Methodology: Audio Signal Analysis

Audio signal: Short-Term Fourier Transform (STFT)

(Audio signal)

(STFT spectrogram)

Proposed Methodology: Image Motion Analysis

Image motion: motion estimation by template matching

Proposed Methodology: eCNN model

Multi-modal input

(extended Convolutional Neural Network model)

Experiments: Setup

- Data split into training set (70\%), validation set (10\%), testing set (20\%)
- eCNN model structure:
- Image input: 32 convolution filters of size $7 \times 7 \rightarrow$ batch normalization over color channels \rightarrow max pooling with pool size 3×3
- Audio input: STFT \rightarrow batch normalization
- Motion input: max pooling with pool size 9×3
- Train eCNN model over 40 hyper-epochs and 4 hyper-batches
- Performance on validation set used to select hyperparameters
- Train eCNN model on single-modal inputs (image only, audio only, motion only) to evaluate how single-modal information is perceived by dog

Experiments: Results

Overall prediction accuracy: 79.02\%

	Training	Validation	Testing
Number of Samples	3505	458	954
Number of Samples: class Sit	338	55	102
Number of Samples: class Stand	521	65	149
Number of Samples: class Walk	1574	207	427
Number of Samples: class Smell	1072	131	276
Overall Accuracy	94.34%	79.47%	79.02%
Accuracy of class Sit	99.11%	88.00%	84.21%
Accuracy of class Stand	95.59%	72.73%	78.87%
Accuracy of class Walk	96.19%	78.95%	78.66%
Accuracy of class Smell	86.47%	78.20%	74.33%

Experiments: Results

Confusion matrix on testing set

Prediction Ground truth	sit	stand	walk	smell
sit	80	5	9	1
stand	3	112	23	4
walk	15	26	328	48
smell	4	6	67	223

Experiments: Results

$>$ Observation: use of hyper-batches achieves optimal performance in less number of epochs

(Testing hyperparameters: number of hyper-batches, number of hyper-epochs)

Experiments: Results

$>$ Observation: dog reacts to various color patterns and color contrasts!

Experiments: Results

$>$ Observation: dog reacts strongly to some low frequency components in what it hears!

motion

(average weights on image inputs, audio inputs, and motion inputs)

Conclusion

- We proposed an eCNN model to learn and model the association between a dog's perceived visual and audio stimuli and the dog's behavior
- eCNN model showed promising results in predicting dog's behavior
- Dog seems to react to various color patterns and color contrasts, as well as some low frequency components in the sound it hears
- The insights gained in this project can potentially create new ways of training service dogs for rescue work, companionship, and more

Future Work

- Add infrared sensors to study if and how dogs react to temperature
- Test sequence models such as Recurrent Neural Networks for potential performance improvements
- Extend data collection to study how a dog reacts to unfamiliar situations, human voices, other dogs barking, music, and much more
- Extend the study to different dogs and understand the general and individual behavior of dogs

