
To design the custom pieces and chassis of my robot I used FDM 3-D
printing using PLA material as it proved to be light and strong. Since using
printing services of a company is very expensive, I used my own printer to
print all my parts. First I uploaded STL files to splicer and then tuned
settings for printing. Sometimes printing proved to be very difficult when I
had overhangs or support dependent structures. For my final chassis I
attempted to use NylonX as my printing material as it is significantly
stronger and only has a density of 1g/cm^3 compared to 1.25g/cm^3 of
PLA. However I found that nylonX had many warping problems and after
many attempts I decided to stick with PLA.

These Lightweight robots are equipped with
omnidirectional camera, kicker, dual layered omni

wheels, and fmy Maxon motors. Utilizing custom 3-D
printed parts, the robot achieves both a lightweight and

secure framework. Data from line sensors on the
custom line PCB are used to ensure the robot stays
within the defined boundaries of the field. Using

infrared sensors the robot is able to detect and follow
the ball using the optimal path, made possible by path

optimization software. Finally, a refined bluetooth
connection between both robots allows for smooth
transitions between offensive and defensive roles,

allowing for tactical play.

Chassis

Improvements
After US nationals I decided to make many large improvements to my robot for
worlds. The biggest change I made was using maxon motors to replace the old pololu
motors. Maxon motors. Each maxon motor is 40-45g heavier than my previous
motor so I had to make my chassi thinner and remove unnecessary parts. One place I
reduced weight was by using 4 poles made of standoffs instead of the heavy acrylic
tube to hold up the mirror. After previous testing I also found that the line PCB was
too close to the carpet and as a result gave values that were hard to work with. This
led to a lot of problems with the robot being unable to stay in the box. In my
improved design I made overhangs within my chassis to push the line pcb more to
the inside of my robot.

Software

Electrical Abstract

Manufacturing and Design

PCBs were designed using KiCad software. Because some of my
parts were uncommon I created my own symbols and footprints
within kiCad to be able to use these components with my design. I
would then test different parts of these boards to make sure
everything works correctly. In The first iteration of my board I used
3.5mm terminal blocks to connect the battery cable to my main
PCB. But I found that after constant unplugging and replugging of
the battery connector the cable would slowly pull out of the terminal
blocks and sometimes create shorts. In my next version I made
sure to have a metal contact where I could directly solder the wires
for more secure attachment

For my custom designed hyperbolic mirror I used mirror foil that was
bendable to any shape when heated to a certain temperature. I printed
a mould using SLA 3d Printing and then used high grit sandpaper to
smoothen the mould out. Holding the mirror sheet over the stove I
would heat it up until the mirror surface became a water like surface
and very rapidly placed the mirror over my mould. Unfortunately this
did not work very well as even after sanding there were many small
bumps and curves that corrupted the reflection. For a second try I used
NylonX. I went through the same process of creating a mirror as
aforementioned.

my chassis is not only designed to hold all of my
components it is also designed to take impacts and make
the robot structurally very strong and at the same time
keep it within weight limit.
Walls
I surround the entire perimeter of the robot even around
the wheels to ensure that the impacts of other robots
colliding will not be taken into the wheels or motors The
walls are also curved which work to distribute the shock
from impacts.

While designing my chassis one of
the biggest decisions I had to make
was the angle of fmy wheels in
respect to the center. At first one
would assume that a 45 degree
angle for all the wheels would make
the best Xdrive. But after doing
research I realized that the angle of
the x-drive is directly proportional to
the speed/torque ration of the robot.
Learning this I tuned my robot for
greater speed by creating 40 degree
angles wheels.

One of the biggest problems I
faced was finding a way to attach
plastic omni wheels to a metal
d-shaped shaft. I experimented
with many different methods
using 3d printing adapters with
their own set screws and nuts.
However all of my tests
concluded the same result: plastic
is very flimsy and is not strong
enough to hold the set screw
against the motor shaft. After
further research I found aluminum
adapters that fit into my motors
with its own set screw system. I
simply created omni wheels that
would be able to connect to this
aluminum adapter.

 ROBOCUP 2022

Communication
Use of ADC
Because of the large amounts of sensor that my robot uses I decided to use the MCP3008 adc which takes in
8 analog values and the teensy is able to ask for any of these values at anytime through spi communications.
MISO, MOSI, SCK and CS wires are connected between each adc. The teensy then communicates with
each of these adc’s to get the necessary sensor values.
Ball Sensor Shield
Through inspiration from other great teams I realized that I could make my ball sensor values even
more accurate by adding a sensor shield. This shield would have to cover every ball sensor shield and
add a small opening to let IR light in. The material of the covering had to be fully closed so that it
would not let any light in.

Main PCB
The main PCB contains 24 ball sensors placed at 15 degree increments.
Each sensor is also paired with its own low pass filter to convert the
digital signal from the ir receiver to analog values that the adc can read.
It also contains my main microcontroller the teensy 4.1, openMV cam,
motor driver ports and the xbee for remote communication.

All of my pcbs are placed in a very easily accessible location on both the top and bottom
of the pcb. These pcb’s are removable by simply unscrewing 4 screws and fully
detachable as both the pcbs are connected through a very easy to remove idc cable.

Both my robots have a kick functionality to make scoring goals
against enemy defenders easier. my kick is formed through a open
frame solenoid that requires very high voltage for strong kicks. I
found that 55 volts seemed optimal for staying within the kicker
limit. To be able to control this voltage with my teensy 4.1 I used a
series of mosfets that were connected to optocouplers to be able to
control the kicker. I even have a protection mosfet that disconnects
the rest of the robot from the kicker when the kicker is enables. This
ensures that the solenoid does not draw too much current from the
battery.

This year the primary cause of hardware problems with my
robots proved to be electrical faults. Because all of the soldering
was done by us, human errors were easy to make and finding
these errors proved to be very difficult. The primary process for
finding these errors was using a multimeter to test continuity
between different pins. Sometimes a wrong placement of one part
of the board would result in burning of traces and damaged
components. To bypass these burned traces I would solder
jumper wires to mimic the job of the trace.

Line Control
One of the primary criteria that the robot has to meet is staying within the boundaries
of the field, which are delineated by white lines. I achieved this task mainly with the
help of my custom line PCB. Positioned at the bottom of my robot, the PCB is
equipped with 24 LEDs and photoresistors arranged at 15 degree increments. Using
the threshold values for the respective colors, and
Role Switching
I use two Xbee S2C radios configured using zigbee protocol to communicate
between the two robots locally. The robots exchanged their roles and switched
between offense and defense depending on which robot was closer to the ball.

Ball Sensing
 To calculate ball angle I used vector
calculation. First I read the sensor values
of each ball sensor. Then I multiplied the
read values with the sin(𝛳) and cos(𝛳). 𝛳
being the angle of the ball sensor. After
doing this I had vectors of each ball
sensor. The sensor that the ball was
closer to would have a larger vector
pointing in that direction. To get one
vector pointing to the ball I simply added
all of the vectors. To convert x and y
coordinates of the vectors to an angle I
used the atan2() function which took in x
and y as parameters and output an angle
in degrees.

Orbit and Dampen Functions
 Although I were able to capture the ball using my ball detection software, the
orbit and dampen functions allow us to do this using the most efficient and
optimal path, which may not always be a straight line. This is mainly because of
a lack of a way to keep the ball in my control, as the momentum of the robot
would inadvertently bump the ball out of my control. The orbit function finds the
radius of the orbit around the ball, and using the current ball angle, outputs the
angle needed to properly orbit the ball. When directly behind the ball, the orbit
function outputs 0, as a straight path is optimal. However, in the other cases an
angle will be added to the initial ball angle. This path is then further optimized
using the dampen function. This function reduces the amount that the robot’s
path alters from its original straight path. This is important as it prevents the
robot from following an unnecessarily long path. These functions together create
a path that is mostly straight other than a slight smooth curve as the robot
approaches the ball to maintain control.

Camera
Color detection with the openMV was relatively easy as I
were given very great example codes in the application. All
I had to do was set color thresholds which are able to
detect specific colors in the image. After I detected the
goal I compared the x and y coordinates of the goal to the
coordinates of the center of the image. Finally I compared
these coordinates and once again used the atan2()
function to find an angle to the goal. I were also able to
find the distance the camera was relative to the goal. I
found this by using focal length and comparing the size of
the goal as the robot moves closer or farther away.
Theoretically this works great however I found that this
data was not very reliable. For this reason I only used the
goal distance for very limited uses.

Goal Kicker:
The kicker of my robot was controlled based on
many different parameters. The most important
of these involved the data from the light-gate
sensor that is placed in the ball capture zone of
my robots. If the sensor was within a certain
threshold it would mean that the robot had the
ball. In addition the kicker would only kick after a
certain amount of seconds to ensure avoidance
of continuous kicks

Defense
Programming defense proved to be a great
challenge as there were many new
constraints with the new field design. my main
algorithm surrounded vector addition once
again. I calculated both the ball angle and the
goal angle and used the two angles to place
the robot between the two. I noticed that
when playing the role of defense, at times,
the robot would chase the ball as opposed to
following its direction. To combat this issue, I
designed an algorithm which depending upon
time away from line, magnitude of the ball
signals (signifying distance from the robot),
and vector projections to prevent excessive
forward movement, I are able to have my
robot reliably defend the goal.

Graph for speed vs Torque

By: Naveen Enock

sec(x)&1/sec(x)

0.08*e^0.0.2x

Autonomous Soccer Robot

