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Abstract  1 

Objectives 2 

To evaluate the efficacy of combining predictive artificial intelligence and image similarity model to risk 3 

stratify thyroid nodules, using a retrospective study.  4 

Methods 5 

Two datasets were used to determine the efficacy of the algorithm. One was the publicly available 6 

Stanford dataset consisting of ultrasound images of 192 nodules between April 2017 to May 2018 and 7 

the second one was from a private practice setting consisting of 118 thyroid nodule images from 2018-8 

2023. All the nodules had definitive diagnosis either by biopsy or by surgery.  The software was used to 9 

predict the diagnosis and TI-RADS score.  10 

Results 11 

In the Stanford dataset, the AI algorithm predicted malignancies with a sensitivity of 1.0 and a specificity 12 

of 0.55. The PPV was 0.18 and the NPV was 1.0. The AUCROC was 0.78. The AI algorithm did not miss 13 

any cases of cancer. TI-RADS based clinical recommendation had a polychoric correlation of 0.67. In the 14 

private dataset, the AI algorithm predicted malignancies with a sensitivity of 0.91 and a specificity of 15 

0.95. The PPV was 0.8 and NPV was 0.98. AUCROC was 0.93 and accuracy was 0.94. TI-RADS based 16 

clinical recommendation had a polychoric correlation of 0.94 for this dataset. 17 

Conclusion 18 

The AI model demonstrated high negative predictive value with a potential for 60% reduction in the 19 

need for biopsy. This could reduce the burden on patients and healthcare costs.  20 



 2 

Introduction 21 

  22 

Thyroid nodules are commonplace findings in clinical settings, with an estimated prevalence in the 23 

general population ranging from 4% to 6.5%.1 Though the vast majority of these nodules are benign, 24 

roughly 10%-15% of them are malignant.2   Currently, the best method to evaluate thyroid nodules 25 

involve ultrasound-guided fine-needle aspiration biopsy, which is invasive and can be emotionally 26 

distressing for patients.3 Moreover, up to 30% of biopsies lead to indeterminate results, requiring a 27 

repeat biopsy or surgery.4 To effectively distinguish whether a thyroid nodule is benign or malignant is 28 

crucial in determining accurate clinical management and reducing the number of unnecessary biopsies. 29 

  30 

AI has been increasingly utilized in various fields of medicine, including radiology and pathology, 31 

demonstrating its potential to augment the accuracy of diagnosis.5 In thyroid nodule evaluation 32 

particularly, AI-driven predictive models offer non-invasive strategies to detect malignancies.6 33 

  34 

Additionally, image similarity assessment, which involves the comparison of visual characteristics of 35 

images, can also be used in medical diagnostics. It offers an efficient analysis of medical images that may 36 

exceed the capabilities of the human eye.7 The potential of combining AI-driven predictive models with 37 

image similarity assessment in thyroid nodule evaluation has not been explored for diagnosis and ACR 38 

TI-RADS assessment.8 Therefore, in this paper we are evaluating the benefits of combining these 39 

methods. We elucidate the methods of our software, evaluate its performance, and discuss the 40 
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potential implications of combining image similarity and AI to provide better screening for thyroid 41 

nodules. 42 

Materials and methods  43 

In this study, we used software that integrates AI-driven predictive models with image similarity 44 

assessment for thyroid nodule evaluation.  Version 2 of this software also predicts ACR TI-RADS. PEARL 45 

IRB determined the study to be exempt. Two diverse datasets were used to evaluate the AI model. The 46 

first dataset is an open-source dataset from Stanford University from 2021, which consists of 192 images 47 

of thyroid nodules .9  These images were collected between April 2017 and May 2018. The second data 48 

set is from a private practice setting consisting of 118 thyroid nodule images from 2018 to 2023. This 49 

data set consists of images from an in-house thyroid ultrasound machine as well as an external radiology 50 

ultrasound machine. Both data sets had confirmed cytopathology and a TIRADS score. For the second 51 

data set with in-house images, the TIRADS score was assigned by the performing endocrinologist (RV) 52 

which was then reviewed and confirmed by a second endocrinologist (RP). Any discrepancies were 53 

resolved by a third endocrinologist(JC). 54 

 55 

The inclusion criteria for the study were males and females, aged 18 years with thyroid surgery or biopsy 56 

at participating sites with a definitive diagnosis by cytology or pathology. Indeterminate nodules 57 

(Bethesda III, IV, and V) upon initial evaluation should have undergone surgery with a definitive 58 

diagnosis to be included in the study. Thyroid nodules measuring between 5 mm and 40 mm (4.0cm) in 59 

the maximum dimension by ultrasound imaging in transverse dimension. The longest diameter of the 60 

thyroid nodule should be less than the length of the ultrasound transducer.  61 

 62 

https://www.zotero.org/google-docs/?aGw1Th
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Exclusion criteria for the study were patients below the age of 18 years; indeterminate thyroid nodules 63 

without a definitive diagnosis; ultrasound images of thyroid nodules containing annotations, markings, 64 

writings, or crosshair within the nodule and whole thyroid nodule not visible in the ultrasound section; 65 

metastasis to the thyroid from other malignancies as well as lymphoma of the thyroid were also 66 

excluded; multinodular goiters without a clearly separable nodule on ultrasound images and nodules 67 

that underwent radioactive iodine treatment, ethanol ablation, radiofrequency ablation or laser 68 

ablation. 69 

 70 

The software uses static images in the AP dimension. It automatically identifies regions of interest. By 71 

comparing these regions to images in the training dataset, the software predicts whether the nodule is 72 

benign or malignant and also provides an ACR Thyroid Imaging Reporting and Data System (TI-RADS) 73 

score (Figure 1).  74 

We used Python language with Sckit-learn library to do the statistical analysis.10 75 

 76 

Results 77 

 78 

In the Stanford public dataset, there were 17 malignant nodules and 175 benign nodules. The 79 

prevalence of malignancy in this dataset was 8 percent. Compared to ground truth, the AI algorithm 80 

predicted malignancies with a sensitivity of 1.0 and a specificity of 0.55. The positive predictive value 81 

(PPV) was 0.18 and the negative predictive value (NPV) was 1.0. The AUCROC was 0.78. The AI algorithm 82 

did not miss any cases of cancer. ACR TI-RADS based clinical recommendation had a polychoric 83 

correlation of 0.67. 84 

https://www.zotero.org/google-docs/?MWWnHE
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In the private dataset there were 96 benign nodules and 22 malignant nodules. The prevalence of 85 

malignancy was 18.85%. In this dataset, the AI algorithm predicted malignancies with a sensitivity of 86 

0.91 and a specificity of 0.95. The PPV was 0.8 and NPV was 0.98. AUCROC was 0.93 and accuracy was 87 

0.94. In this dataset, 5 out of the 99 benign nodules were read as malignant by the AIBx algorithm. 88 

These nodules had high risk features with TI-RADS scores 4-5 for 4 out of the 5 nodules and TI-RADS 89 

score of 3 for 1 out of the 5 nodules. The AIBx algorithm also predicted 2 out of the 22 malignant 90 

nodules as benign. These nodules had a TI-RADS score of 3. TI-RADS-based clinical recommendation had 91 

a polychoric correlation of 0.94 for this dataset. Table 1, shows comparison of AI predictions on both 92 

datasets.  93 

The Pearson correlation coefficient between ground truth cytopathology diagnosis and AI diagnosis was 94 

0.824 with a p-value of 2.29 x 10^-31, indicating a strong positive correlation that is statistically 95 

significant. The AI program and ground truth diagnoses exhibit high agreeability with a concordance rate 96 

of 94.26 percent and an F1 score of 85.21 percent. 97 

Regarding the TI-RADS score by a physician vs that was predicted by AI algorithm, the Pearson 98 

Correlation Coefficient was 0.877 with p< 0.001 indicating a strong linear relationship between the two 99 

readings. Cohen's Kappa for physician readings vs AI reading was 0.753. This indicates substantial 100 

agreement between the physician and the AI system. 101 

Discussion  102 

In recent years, artificial intelligence tools have become increasingly prevalent across multiple 103 

disciplines.  104 

AI can be particularly useful in evaluating thyroid nodules, typically for risk stratification.6,11 105 

https://www.zotero.org/google-docs/?4gZ1yp


 6 

  Recent studies suggested that the performance of artificial intelligence models was better or at par 106 

with radiologists.. 12,13 These studies postulated that artificial intelligence software can be especially 107 

beneficial for physicians with less experience. Currently, the United States Food and Drug Administration 108 

has approved four AI platforms for thyroid disease. Despite the reported efficacy of artificial intelligence, 109 

common concerns exist with its usability, such as the proper integration of AI and radiologist 110 

interpretations and assessment of productivity. Furthermore, the authors concluded that the successful 111 

adoption of AI platforms requires that the software be incorporated into the physician's workflow 112 

seamlessly and should have external validation studies.6  Our software addresses some of these 113 

concerns. By generating human-understandable descriptors and explanations for its decisions, our 114 

software’s interpretations can be verified by physicians. Having a high negative predictive value and 115 

decreasing biopsy need by 60%, this software demonstrated its ability to reduce healthcare spending. 116 

Coupled with its easy-to-use nature, this software ensures practicality, workflow efficiency, and 117 

demonstrable performance, all of which are critical for acceptance in clinical settings. 118 

 119 

Need for explainability in medical AI models.  120 

Explainable AI or interpretable AI, is a set of tools and methods that help people understand and 121 

interpret predictions made by their machine learning algorithms.14 This consists of an explainable model 122 

and an explanation interface so human users can understand what caused the model to make a certain 123 

conclusion or prediction, which helps characterize model accuracy, fairness, transparency, and 124 

outcomes in decision-making powered by AI.15 However, there is a reluctance to use medical AI due to a 125 

combination  of lack of focus on the end-user by developers of the AI leading to a subjective difficulty of 126 

understanding the algorithm and more comfort with human decision making. 16,17 Therefore, focusing on 127 

the end user by developers of medical AI as well as interventions to increase the understanding of a 128 
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medical algorithmic decision process would be important to increase utilization. This is especially crucial 129 

in medicine because medical professionals need to understand the basis for an algorithm’s diagnosis. A 130 

false negative could mean that a patient doesn’t receive life-saving treatment, and a false positive could 131 

result in a patient receiving expensive and invasive treatments when it isn’t necessary to do so.18 A level 132 

of explainability is essential for medical professionals to have comfort in integrating medical AI into 133 

practice. Our AI algorithm took these factors into consideration with its easy to use interface and 134 

transparency in decision making that makes it very user-friendly and easy to integrate into daily practice 135 

with confidence.  136 

 137 

Due to a lack of validation, many AI technologies are not applied in clinical decision-making 15. External 138 

validation is used to evaluate predictive capabilities for target clinical implementations in different 139 

populations and settings.19 Predictive models often perform well under training datasets. However, 140 

there is a discrepancy between training and validation performance. This discrepancy even appears 141 

when training and validation datasets are from the same populations and settings. Poorly developed 142 

models lead to exacerbated disparities in healthcare provisions and outcomes. Thus, external validation 143 

is necessary to avoid the consequences of a model with low adaptability. External validation is critical to 144 

understanding the clinical utility of prediction models.20   Hence we undertook external validation on 145 

two widely different datasets and demonstrated good performance. 146 

 147 

One of the unique aspects of our research is its integration of image similarity assessment and TI-RADS 148 

scoring to produce diagnostic outcomes, a combination that has not been explored before in thyroid 149 

nodules. Image similarity assessment uses visual pattern recognition to compare and contrast features 150 

https://www.zotero.org/google-docs/?hFuWkD
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of a nodule against a repository of images already classified as malignant or benign. This results in a 151 

more accurate evaluation while simultaneously allowing medical professionals to verify the algorithm’s 152 

conclusions. A TI-RADS score aids in this endeavor by providing human-understandable descriptors to fill 153 

the gap between the novelty of AI algorithms and the traditional use of clinical assessment. Our 154 

software identifies similar images from its database when compared to the test image. The diagnosis of 155 

the most similar image is displayed as the output of the AIBx algorithm.  A TI-RADS score description and 156 

recommendation is then produced by the model to enable verification by medical professionals.  157 

 158 

Some limitations of our study were the small sample size, use of static images, and the low number of 159 

malignant cases. These could have contributed to the low positive predictive value. In the future, we 160 

could test it on databases with a higher prevalence of malignancy. But the average prevalence of 161 

malignancy in the combined dataset was very similar to the general population. Furthermore, this 162 

software was not prospectively evaluated in a clinical setting.  163 

 164 

The results from the study showed a high negative predictive value, meaning if our algorithm predicted 165 

that a nodule is benign, it had a very low probability of being malignant. This would translate into 166 

observation as opposed to undergoing a biopsy. The AI algorithm missed only 2 malignant nodules. Both 167 

of these nodules were follicular carcinomas of the thyroid and had benign characteristics isoechoic, clear 168 

borders, and small central cystic spaces. However, feedback to the AI with these types of nodules as 169 

malignant could lead to better predictions in the future. Our AI model performed well with ultrasound 170 

images across multiple institutions using different ultrasound machines and showed no bias across 171 

nodules of various types and sizes and age groups.  172 
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Conclusion  173 

The combined image similarity and AI model demonstrated high negative predictive value with a 174 

potential for a 60% reduction in the need for biopsy. This holds significant clinical implications, as the 175 

integration of image similarity and AI-driven predictive models could revolutionize the approach to 176 

thyroid nodule evaluation. Not only does this pave the way for non-invasive screening, but it also has 177 

the potential to greatly reduce the burden on patients and healthcare costs alike. 178 

 179 

References 180 

1. Popoveniuc G, Jonklaas J. Thyroid Nodules. Med Clin North Am. 2012;96(2):329-349. 181 
doi:10.1016/j.mcna.2012.02.002 182 

2. Kamran SC, Marqusee E, Kim MI, et al. Thyroid nodule size and prediction of cancer. J Clin Endocrinol 183 
Metab. 2013;98(2):564-570. doi:10.1210/jc.2012-2968 184 

3. Jasim S, Dean DS, Gharib H. Fine-Needle Aspiration of the Thyroid Gland. In: Feingold KR, Anawalt B, 185 
Blackman MR, et al., eds. Endotext. MDText.com, Inc.; 2000. Accessed February 19, 2024. 186 
http://www.ncbi.nlm.nih.gov/books/NBK285544/ 187 

4. Yip L, Farris C, Kabaker AS, et al. Cost Impact of Molecular Testing for Indeterminate Thyroid Nodule 188 
Fine-Needle Aspiration Biopsies. J Clin Endocrinol Metab. 2012;97(6):1905-1912. 189 
doi:10.1210/jc.2011-3048 190 

5. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat 191 
Med. 2019;25(1):44-56. doi:10.1038/s41591-018-0300-7 192 

6. Tessler FN, Thomas J. Artificial Intelligence for Evaluation of Thyroid Nodules: A Primer. Thyroid Off J 193 
Am Thyroid Assoc. 2023;33(2):150-158. doi:10.1089/thy.2022.0560 194 

7. Krupinski EA. Current perspectives in medical image perception. Atten Percept Psychophys. 195 
2010;72(5):10.3758/APP.72.5.1205. doi:10.3758/APP.72.5.1205 196 

8. Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid Imaging, Reporting and Data System (TI-197 
RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol JACR. 2017;14(5):587-595. 198 
doi:10.1016/j.jacr.2017.01.046 199 

9. Yamashita R, Kapoor T, Alam MN, et al. Toward Reduction in False-Positive Thyroid Nodule Biopsies 200 
with a Deep Learning-based Risk Stratification System Using US Cine-Clip Images. Radiol Artif Intell. 201 
2022;4(3):e210174. doi:10.1148/ryai.210174 202 

10. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning in Python. J Mach Learn 203 
Res. 2011;12(85):2825-2830. 204 

11. Wildman-Tobriner B, Taghi-Zadeh E, Mazurowski MA. Artificial Intelligence (AI) Tools for Thyroid 205 
Nodules on Ultrasound, From the AJR Special Series on AI Applications. AJR Am J Roentgenol. 206 
2022;219(4):1-8. doi:10.2214/AJR.22.27430 207 

https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7


 10 

12. Park VY, Han K, Seong YK, et al. Diagnosis of Thyroid Nodules: Performance of a Deep Learning 208 
Convolutional Neural Network Model vs. Radiologists. Sci Rep. 2019;9(1):17843. 209 
doi:10.1038/s41598-019-54434-1 210 

13. He LT, Chen FJ, Zhou DZ, et al. A Comparison of the Performances of Artificial Intelligence System 211 
and Radiologists in the Ultrasound Diagnosis of Thyroid Nodules. Curr Med Imaging. 212 
2022;18(13):1369-1377. doi:10.2174/1573405618666220422132251 213 

14. Barredo Arrieta A, Díaz-Rodríguez N, Del Ser J, et al. Explainable Artificial Intelligence (XAI): 214 
Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fusion. 2020;58:82-215 
115. doi:10.1016/j.inffus.2019.12.012 216 

15. What is Explainable AI? - Unite.AI. Accessed February 19, 2024. https://www.unite.ai/what-is-217 
explainable-ai/ 218 

16. Cadario R, Longoni C, Morewedge CK. Understanding, explaining, and utilizing medical artificial 219 
intelligence. Nat Hum Behav. 2021;5(12):1636-1642. doi:10.1038/s41562-021-01146-0 220 

17. Chen H, Gomez C, Huang CM, Unberath M. Explainable medical imaging AI needs human-centered 221 
design: guidelines and evidence from a systematic review. Npj Digit Med. 2022;5(1):1-15. 222 
doi:10.1038/s41746-022-00699-2 223 

18. McNamara M. Explainable AI: What is it? How does it work? And what role does data play? 224 
Published February 22, 2022. Accessed February 19, 2024. 225 
https://www.netapp.com/blog/explainable-ai/ 226 

19. Tsopra R, Fernandez X, Luchinat C, et al. A framework for validating AI in precision medicine: 227 
considerations from the European ITFoC consortium. BMC Med Inform Decis Mak. 2021;21(1):274. 228 
doi:10.1186/s12911-021-01634-3 229 

20. Riley RD, Archer L, Snell KIE, et al. Evaluation of clinical prediction models (part 2): how to undertake 230 
an external validation study. BMJ. 2024;384:e074820. doi:10.1136/bmj-2023-074820 231 

 232 
 233 
 234 
 235 
 236 
 237 
 238 
 239 
 240 
 241 
 242 
 243 
 244 
 245 
 246 
 247 
 248 
 249 
 250 
 251 
 252 

https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7
https://www.zotero.org/google-docs/?13DzY7


 11 

Table 1: Comparison of AI predictions on both datasets 253 

 Stanford Data Private Data 

Sensitivity 1 0.91 

Specificity 0.55 0.95 

PPV 0.18 0.8 

NPV 1 0.98 

AUC ROC 0.78 0.93 

 254 
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Figure 1: AI software result interface. 266 

 267 

 268 


