For the researchers' five second rule and disinfectant experiment, the experimenters' research found that an unopened box of donuts is the best food to drop on the floor due to its slightly acidic pH (Channahai Paragraph 1) which attracts bacteria (fdcas paragraph 1). It is best to let bacteria sit on the agar plates for 5 days for peak condition of bacterial growth. (Study paragraph 2). To count the bacterial colonies on the plates, Use an app known as "Oculyze," which is reliable and has great efficiency (Oculyze Section 2, Paragraph 1-2). After this, the experimenter will analyze the data they have collected, and approve or disprove the hypothesis. I think that the 5 second rule will not be scientifically proven and the amount of bacteria for a non-disinfectant treatment would be very high have collected, and approve or
(MaCallum paragraphs 16,21).
What is the hypothesis? (Use an "If...then..." statement)

If the food is put on the ground for only 5 seconds and Clorox is sprayed on the location it is dropped on, then the amount of bacterial colonies will be significantly less then other disinfectants.

- Lysol
- Clorox
- Pine Sol
- Home disinfectant treatment
- No treatment

How many replicates of each level will be tested?
3 replicates of 10 levels (5 times stamps, 5 treatments)
What are the constants in the experiment?
Time rested on the agar plates, location, sterilized swabs, the app used to count the amount of bacterial colonies which are sealed in the same type of agar plates, same food being tested.

What kinds of materials are needed to run the experiment?

- Agar Plates
- Sterilized Cotton Swabs
- Donuts
- Oculyze app
- Timer
- Disinfectants (homemade or purchased)
- Lysol
- Clorox
- Pine Sol
- No treatment
- Homemade disinficent

What kind of location or setting is needed to run the experiment?

An open- spaced and secure environment, inside would be the most ideal, either on a floor or counter.

Risk and Safety: Identify any potential risks and safety precautions needed.

- Spraying chemicals into eyes: wear goggles
- Chance of being contaminated by bacteria: wear protective clothing and gloves

1. Make the home disinfectant using $1 / 2$ cup of vinegar, and 3 lemon rinds mixed together. Let that sit outside in an air sealed container for 24 hrs, strain out lemon rinds, and mix in some water on top, transfer to a spray bottle, keep ready.
2. Label agar plates list labels and numbers. Describe in detail the number of plates and labels.
3. Keep sterilized cotton swabs open on the side ready for use
4. Wipe down the floor with dry paper towel to get rid of dust or crumbs
5. Take the 1st donut and swab the bottom part of it, then rub the swab on the 1st labeled plate named control agar plates (this is the control group)
6. Cover plate and store on tray
7. Repeat step 5 and 6 for 2 more times
8. Now drop a new donut piece on the floor for 5 seconds with no treatment, 3 times. Repeat the steps for the 5 second interval with Pine Sol, Clorox, Lysol, and the Homemade Disinfectant treatments. Repeat all 5 of these treatments 3 times for the following time stamps 10, 15, 30, and 60 seconds. Note, for each disinfectant, use a different part of the floor to avoid cross contamination. (spray each substance on different parts of the floor so chemicals do not mix)
9. Once step 7 is done, set a timer for 3-5 days to let the sample rest on the agar plates.
10. After 3-5 days, use the Oculyze app to count the bacterial colonies on each plate.
11. Record \& Analyze Data.
12. After I find the number of bacterial colonies for all the tests I will make a data table and jot down my data
13. Mean
14. Data table
15. I will then create a graph with the x axis as the time and y as the \# of colonies, I would have 5 lines representing my different treats
\qquad Date 11/16/23
\qquad Date \qquad
**No experimentation may be started until all signatures are obtained.

Time	$\begin{aligned} & \text { No } \\ & \text { txt1 } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Txt2 } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Txt3 } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { No } \\ \text { Txt } \\ \text { Avg } \\ \hline \end{array}$	$\begin{aligned} & \text { Lysol } \\ & \text { Txt1 } \end{aligned}$	$\begin{aligned} & \text { Lysol } \\ & \text { txt2 } \end{aligned}$	$\begin{aligned} & \text { Lysol } \\ & \text { txt3 } \end{aligned}$	$\begin{aligned} & \text { Lysol } \\ & \text { txt } \\ & \text { avg } \\ & \hline \end{aligned}$	Clorox txt1	Clorox txt2	Clorox txt3	Clorox txt avg	PineSol txt1	PineSol txt2	$\begin{aligned} & \text { PineSol } \\ & \text { txt3 } \end{aligned}$	PineSol txt avg	Home txt1	Home txt2	Home txt3	Home txt avg
$\begin{array}{\|l} \hline \mathrm{O} \\ \mathrm{sec} \end{array}$																				
$\begin{array}{\|l\|} \hline 5 \\ \text { sec } \end{array}$																				
$\begin{array}{\|l} \hline 10 \\ \text { sec } \\ \hline \end{array}$																				
$\begin{aligned} & \hline 15 \\ & \text { sec } \end{aligned}$																				
$\begin{aligned} & \hline 30 \\ & \text { sec } \end{aligned}$																				
$\begin{array}{\|l\|} \hline 60 \\ \text { sec } \\ \hline \end{array}$																				

