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Abstract 
 

As an innovative type of robotic system, reconfigurable robots have the ability to change their 
physical configuration or shape to adapt to various environmental requirements. Compared with their 
traditional counterparts, these robots can perform tasks in unpredictable, constantly evolving, and 
dangerous environments more effectively, e.g., conducting search and rescue operations in disaster zones 
or exploring uncharted territories. Previous or ongoing research in reconfiguration robots has primarily 
focused on improving modularity, flexibility, and efficacy. In this project, though, we aim to design a 
novel modular construction for reconfigurable robots, which depend on specifically designed joints to 
allow the robot to accommodate even more types of surfaces in extreme environments. Our system 
consists of multiple units, each having three joints and providing great versatility to alleviate energy loss. 
By mimicking animal joints, our joints can perform more movements. Our research has shown that our 
innovatively designed and integrated hardware and software with modular construction exhibits the 
ability to move in a single unit, two units, or four units to adapt to a greater variety of challenging tasks. A 
single unit can move at a speed of around seven centimeters in slightly less than two seconds, and when 
four units are combined, it can move at a speed of around fourteen centimeters in three seconds. Besides, 
this system of multi-unit and reconfigurability can be expanded to create robots that are capable of 
different tasks, such as robotic arms. Also, when combined with other current technologies, it can even be 
used more widely. 
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1 Introduction 
 

1.1 Background 
As the demand for robots continues to expand and application scenarios become increasingly 

complex and diverse, the adaptability requirements for robots are also increasing. These special needs 
have given birth to modular robots, which have become an important branch of robot technology. 

Modular reconfigurable robots are composed of a group of individual units through various ways of 
connectivity. Rigid connections are established between the modules mechanically or magnetically, 
forming tight connections. Through the contraction, extension, rotation, and other motion modes of joints 
within each unit, the entire robot can achieve more flexible mobility and adapt to complex environments. 
In this structure, the coupling between modules and the design of the joints is crucial for the system’s 
overall functionality. The modules can have various shapes, such as square, polyhedral, sheet-like, 
cylindrical, etc. Through combination, different motion effects can be achieved. [1] 

In these systems of units, each module has more flexible mobility. The greater the degrees of freedom 
of a module, the more flexible its motion will be. However, these systems’ mechanical design and motion 
control become substantially more complex. 

Besides simple mobility, modules can be selectively made (provided they have proper connection 
methods) for the robot, such as object holding, transportation wheels, photography cameras, distance and 
color sensing, environmental data testing, etc. Under such a modular framework, modules can be freely 
assembled to meet various requirements or be modified on the fly.  

1.2 Current State of the Study 
One of the studies looked at the connection between units for robot arms in an industrial setting. It 

includes complicated PCB designs and sturdy locking mechanisms to guarantee a tight connection 
between robot arms. In a research paper published on October 28, 2020, called “Intelligent Modularized 
Reconfigurable Mechanisms for Robots: Development and Experiment,” authors Wenfu Xu, Liang Han, 
Xin Wang, and Bin Liang argue that traditional industrial manipulators with a single configuration are 
difficult to meet a variety of tasks now required in factories. Therefore, they investigated the types of 
joints that could be used in reconfigurable robot arms. They compared two lightweight connection 
mechanisms with each other.  [2] 

 

Figure 1 - Reconfigurable Robot Arms 
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On the other hand, these types of joints are not necessarily used in moving parts or robots. Some 
researchers apply this modular idea with sturdy joints and apply it to stationary, non-moving objects, such 
as buildings. Such as the research called “Mechanical Behaviors of Inter-Module Connections and 
Assembled Joints in Modular Steel Buildings: A Comprehensive Review.” This study creates an overview 
of the methods for creating inter-module connections. This modular approach to building allows a more 
time-saving approach to building, reduces on-site work, and wastes fewer resources during such 
processes. [3] 

 

Figure 2 - Joints in Modular Steel Buildings 

SWARM-bots were researched and designed by Dr. Marco Dorigo of the Free University of Brussels 
in Belgium. The SWARM-bot system adopts a track mode and communicates through communication 
modules, enabling robots to aggregate, work collaboratively, allocate tasks, self-assemble, and navigate. 
SWARM-bots robots dock using grippers. [4, 5] SWARM-bots can accomplish tasks that individual s-bot 
robots cannot. The following figure shows multiple s-bot robots in a series completing tasks such as 
crossing a ravine and climbing stairs.  

 

Figure 3 – Swarm-bots 

 

Figure 4 - Small-Sized Modular Robot 

Another study uses magnetic connections instead of mechanical joints. This increases the tolerance 
when two units connect but only compensates for a weaker connection. In the Smores-Ep module, 
researchers used magnets to align units together and enabled the joint itself to rotate. [6] 
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Figure 5 - SMORES-EP Module with Rotatable Connectors 

 

While some studies dive deep into different joint styles and how to stabilize connections between 
units, other researchers also investigated algorithms to facilitate multi-unit control when they form into a 
single unit. For example, “Scalable multi-radio communication in modular robots” by V. Kuo and R. Fitch 
presented a multi-radio architecture for communication in modular robots capable of scaling and constant 
bandwidth neighbor-to-neighbor communication. In the research, the researchers used wireless RF links 
as the primary source of connection and validated the approach using a 45-radio testbed with real data 
loads. [7] 

Another important and distinguishing characteristic of modular robots is that they are often capable 
of self-reconfiguration based on the environment and task (meaning they can reconfigure their 
arrangement without human or external assistance or interference). Often, many such rearrangement 
sequences will all result in the desired outcome, but the best method is always the one with the least 
amount of attachment and detachment. This is because the fewer actions, the less likely something will 
malfunction. In an article called “Auto-Optimizing Connection Planning Method for Chain-Type Modular 
Self-Reconfiguration Robots,” the authors, H. Luo, and T. L. Lam, proposed an algorithm that can auto-
optimize connection plannings for multiple in-degree single out-degree modules. The solution contains a 
polynomial-time algorithm to calculate near-optimal solutions and an exponential-time algorithm to 
further optimize the solutions automatically when some CPUs are idle. [8] 
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2 Design Plan 
2.1 Modularity 

The aim of this project is to create a robot that can traverse all sorts of terrain with great flexibility. 
Section 1.2 shows that if we make the robot modular, it will have this flexibility. The robot will also need 
to move itself to some extent, and there are two options. The first is to create connectors that can move 
and rotate. The Second option is to develop non-moving connectors and make each module itself movable 
with joints. 

The first option is easily viable with electro-magnet joints. Although such a joint creates relatively 
strong connections and great versatility, it consumes a lot of power while generating a lot of additional 
heat.  

Although such a connection is also achievable through complicated mechanical structures, such 
structures would provide many points of weakness that, without expansive and high-strength materials, 
would be easy to break.  

On the other hand, the second option traded off some movement margins to gain much stronger 
mechanical joints that are less likely to break or fail. I ultimately decided to choose this option over the 
previous one. 

 

2.2 Options of Multi-unit Connections and Sided Connections 
Since I decided to create a modular robot, we need to consider how they can connect with each other. 

The first type of connection required is one that forms a snake-like shape. This allows the robot to crawl 
forward and squeeze into tiny cracks. Besides, since the robot needs to be able to stand up and traverse, it 
is necessary for different modules to connect to each other from the sides. This connection allows the 
robot to stand up from the supports of all four sides.  

 

2.3 Programming and Hardware Choices 
In this project, the program has to be uncomplicated and quickly deployable while also having wide 

compatibility for all sorts of motors, servos, and sensors and being capable of remote communication. 
Therefore, I decided to go with Arduino. Arduino is an open-source electronics platform that combines 
both hardware and software. It revolves around Arduino boards, which are physical, programmable circuit 
boards (also often referred to as microcontrollers). These boards can read inputs from the environment—
such as light detected by a sensor, a button press, or remote communications—and translate these inputs 
into outputs. Outputs might include activating a motor, turning on an LED, or sending a message through 
special channels. The Arduino Software (IDE) serves as an Integrated Development Environment for 
writing and uploading computer code to the physical Arduino board. The programming language is 
similar to C++ and Java; therefore, it is relatively simple to learn and start (although I already have a lot 
of experience with it). All of these features combined made Arduino the perfect option for this project.  
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3 Mechanical Structure Design 
3.1 Overall Structure 

As previously mentioned in section 2.1, the robot needs to be modular. Therefore, there must be units 
that can connect to each other and be able to move and change their shape. Also, each unit must be able to 
move itself. Therefore, I have decided to use 3 joints for each unit, 2 of which are in the same direction. 
This allows each unit to crawl forward pretty quickly. There are also connectors (one male and one 
female) on both ends of the robot. However, due to the type of connection I mentioned in section 2.1, two 
sides of the connector will be different: one male side and one female side.  

The entire structure will be 3D printed with the single exception of the plate holding the motor for the 
connector, which is laser printed because it is mostly flat and is unnecessary to be 3D printed.  

Besides, I also made different versions of different parts of the mechanical structure, as I think those 
could be improved. For example, I improved the subunit junctions, and how they would be more securely 
connected to each other through the rotational joints. These versions will be described in each section, 
which represents the specific part of the robot. 

    

3.2 Unit Design 
3.2.1 Material Choice 

Since this project requires a rigid, 3D-printed chassis, the material must be 3D printable, sturdy, 
and bend-resistant. With the budget of this project in mind, the best materials that satisfy this need are 
PETG plastic and PLA plastic. PLA is known for its strength while being beginner-friendly and 
inexpensive, while PETG is known for its superior mechanical properties and impact resistance. 

In the first two units of the robot, I used PLA plastic as it is the most frequently used plastic in 3D 
printing. It turned out well, but the overall structure is still bendable. Therefore, I printed the next two 
units with PETG plastic. Despite the support being more challenging to take off, the overall structure of 
the units is more stable and resistant to bending and warping. I ended up not changing the over PLA for 
PETG because when I compared them side to side, it seemed that the direction of the print mattered more 
than my material choice, so I simply reoriented my 3D models in the printing software and reprinted 
them. 

 

3.2.2 Subunit/Joint Design 
Each unit is ultimately made out of 3 similar subunits, each containing one 270-degree servo, a 

joint, and various connection types depending on whether it is a subunit on the side or in the center. This 
design would give each unit 3 degrees of freedom and the ability to move. Each subunit is then made 
from 2 U-shaped pieces. This design guarantees the integrity of the overall structure and the functionality 
of each subunit. 

In the first functional prototype, I used a joint design with a plate that connects directly to the 
servo, which provides the power for rotation. However, in practice, I observed that this piece would 
actually tilt sideways because two joints are only connected via one link (and a not very stable one at 
best). Therefore, in the second version, I decided to add another link on the other side of the joint. This 
linkage will help support the connection and create more table joints. 
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Figure 6 - Joint V1 

 

Figure 7 - Joint V2 

3.2.3 Servo Mounting Mechanism 
One of the three servos is mounted directly to one of the U-shaped plates of the subunit with 4 

screws that penetrate through the subunit and extends into the other subunit.  This method of connection 
additionally acts as a connection between subunits. 

Because of the design and each subunit need to connect to each other, two of the servos share the 
same screw that penetrates 2 U-shaped plates of different subunits. This also acts as a connection between 
subunits. 
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Figure 8 - Servo Mounting Base 

 

Figure 9 - Servo Mounting Plate 



13 
 

 

Figure 10 - Servo Mounting Positions 

However, when the product is built, I cannot fully use all 4 screws because it is extremely 
difficult to squeeze long screws through the small opening it has and more difficult to tighten them with 
screwdrivers.  

 

3.2.4 Subunit Connections 
All subunits within each unit are connected to their neighbor/ neighbors with at least 4 screws on 

the connection side and an additional connection in the middle through the motor mounting positions (as 
seen in section 3.2.3). These screws guarantee the tightness of the connections and lock rotations on the 
connection plane. 

 

Figure 11 - Subunit Connections 
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3.3 Connector Motor Mounting Mechanism 
This is only applicable to the male connector side of each unit. Each unit will have one N20 motor 

mounted to one end. The N20 motor is secured on a laser-printed plywood piece with a C-bracket, which 
is then secured to the robot through 4 standoffs at the corner of the plywood piece and the robot. The 
screws stick outwards of the end of the robot and act as anchors to lock the rotation of the two connecting 
pieces on the connection plane.  

 

Figure 12 - Motor Mounting Plate 

 

3.4    Connector and Receptor Design 
This only applies to the two subunits at both ends of each unit. For the receptor end, there are four 

enlarged screw holes at the four corners of the face and a large opening at the center for successful 
connection. The four enlarged screw holes are designed to be just bigger than the size of the screws on the 
connector side. They stop the two connected units from rotating on the plane parallel to the two faces.  

 

Figure 13 - Connector face with screw holes circled in red 
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Figure 14 - Connection face 

In this first version, the units can only be connected in a chain, not yet having the capabilities to 
connect sideways and allow for wider arrangement capabilities since there are no connectors on the side 
of the unit. 

Then, in the second version, I created a large center opening on the sides of where the subunits 
initially connect and used a soldering iron to melt part of the sides off the subunit to act as screw holes. 
This allows additional connections on the sides of the original connection. This allows the robot to 
become a complete four-legged robot, which offers much more freedom of movement and greater 
mobility than just simply connecting it to form a line. Besides, despite the fact that part of the unit was cut 
off, it did not impair much of its structural integrity. 

 

Figure 15 - Side connections formed by two units 
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Figure 16 - Possible configuration with side connectors 
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4 Hardware/ Electronic Design 
4.1    Hardware Choices 
4.1.1 Mainboard 

For this project, the mainboard must be powerful enough for fast communication through WIFI 
and BLE, with enough pins for 3 servos (each requires a 5V, a GND, and a GPIO pin) and 1 motor (it 
requires 2 GPIO pins). It also needs to be small enough to be placed nicely into a PCB smaller than 65mm 
* 60mm with many other components because of space limitations. Given such requirements, one option I 
considered is the Arduino Nano board. Despite being small enough to be placed into the PCB and have 
the power to compute that data, it lacks WIFI and Ble, which then requires additional pieces on the PCB 
that have no room. 

 

Figure 17 - Arduino Nano 

Another option is ESP32. It is also small enough to be placed into the PCB while also having 
WIFI and BLE. However, it does not have enough flash for the program that I need to upload with both 
WIFI and BLE.  

 

Figure 18 - Regular ESP32 

 Then, I finally landed on a variant of ESP32: ESP32-S3. It has a bigger flash and bigger RAM, 
which is enough for me to upload my program while having every other feature that I need for this 
project. It is indeed the best fit for this project. 
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Figure 19 - Luatos ESP32-S3 

 

4.1.2 Servo 
The servo needs to have enough strength to lift the entire robot with 4 units in the future. The 

further away the center of mass is from the servo, and the heavier the robot gets, the harder it would be 
for the servo to lift the robot. We can approximate the force required for each servo such that they are 
enough to raise the end of the unit (with 1 other unit attached). 

For the purpose of this project, I chose a servo that has a torque of 25, which is ideally enough for 
lifting the entire equipment.  

 

Figure 20 - Dsservo digital servo 25KG 

4.1.3 Motor 
The motor is used to spin the connector piece to connect two subunits, as stated in section 3.4. It 

needs to be strong enough to spin the connector piece with a lot of friction and tighten it so that the two 
pieces would not be loosely connected. For the purpose of this project, I chose an N20 motor with a high 
torque ratio. The N20 motor uses 12V power and spins at a speed of 1 rotation every 2 seconds. This 
allows the motor to spin reliably from the current and power provided by the power supply.  
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Figure 21 - N20 motor with a torque gear ratio 

4.1.4 Battery 
The Battery mainly needs to satisfy two requirements: rechargeable and small enough to fit into the 

unit. In the end, I chose a battery with a somewhat small capacity, but it satisfies both of the requirements 
I set.  

 

Figure 22 - 12V, 1200mAH Battery 

4.2    PCB Design 
4.2.1 Power Supply/Management Unit 

This is the part of the PCB where the battery is connected to. It helps supply 12V power to the 
motor while providing 5V power to the mainboard through L7805 and servos through another 5V down-
volt chip. This unit helps guarantee every unit on the PCB is sufficiently powered and can run regularly. 

 

 

Figure 23 - Power Management/Supply Schematic 

 

4.2.2 Motor Control Unit 
Since the motor needs 12V power and two PWM inputs from the mainboard (ESP32-S3), it 

requires a special unit to control it. This unit provides power for the motor directly from the battery while 
also receiving information on which direction to spin from the mainboard. 
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Figure 24 - Motor Control Schematic 

4.2.3 Servo Control Unit 
The servos are controlled with 5V power and a single PWM input from the mainboard. Therefore, 

a special unit is required to convert the 12V power from the battery to 5V, which the servo can use. The 
unit also takes input from the mainboard and allows the connected servo to turn to the input degree. 

 

Figure 25 - Servo Control Schematic 

 

4.2.4 Mainboard Connection Unit 
This section did not exist in the first version of the mainboard because I did not think I would 

need other expansions for other components. However, I later thought about further expendabilities for 
my project, so I added these connection units. This allows expansions like cameras, etc.   

This will mount the mainboard to the PCB and control everything. Besides all the pins used by 
the units mentioned above, there are also leftover pins. I then extended these pins to a centralized location 
for future use and additional hardware connections. I also added an indication light on whether if the 
mainboard have power or not (it does not necessarily mean that the Servos and Motor are powered). 

 

Figure 26 - Leftover Pins Schematic 
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Figure 27 - Mainboard and Indication Light Schematic 

 

 

 

4.2.5 Final PCB 
This is the overall PCB schematic and the final product after finalizing the layout of the PCB.  

 

Figure 28 - Overall PCB Schematic 

 

This is what the printed-out PCB looks like without any components attached. It only includes the 
raw circuits and labels left on the PCB. The arrows on the PCB indicate which way the component should 
be mounted, while some, such as a resistor, can be mounted in both directions. 
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Figure 29 - PCB Product Without Components 

 

The process of attaching various components is complicated. The first step is to solder on every 
surface-mounted device (SMD). This process requires some soldering paste (essentially powered solder 
suspended in flux paste) and a heating table. I first applied a moderate amount of solder to every place 
that needed to be soldered on the PCB and gently placed all the components on top of the paste without 
pushing them too hard. Then I placed it on top of the heating table, which heated up to about 230 degrees 
Celsius. I waited for a while and corrected every piece that needed realignment. After about 4 minutes, I 
took the PCB off of the heating table while making sure it would not tilt.  

 

Figure 30 - PCB With Every Surface Mounted Component 

After letting it cool for about 5 minutes, I soldered every through-hole component (THC) to their 
respective locations on the PCB. 
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Figure 31 - PCB with every component 
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5 Software Design/ Programming 
5.1 Overview - Arduino 

In this project, I chose to use Arduino and its related libraries to control the robots. I used Arduino 
with specialized libraries and custom-defined header files and functions to achieve various functionalities, 
such as wireless communication between units, Bluetooth communication from devices to robotics, and 
accurate robot movements with PID control.  

To write the program, compile, and upload the code, I chose Visual Studio Code and Platform IO, as 
they provide the best functionalities and versatility for this project.  

 

Figure 32 - Platform IO in Visual Studio Code 

I also created two versions of the program and used version control. In the first version, my code is 
rather simple and aimed at achieving all the basic functionalities without having a too complicated 
program. In the second version, I revised most of the modules in the first version and added additional 
functionalities and features so that it would be more usable. 

 

5.2 Wireless Communications 
5.2.1 Unit-to-Unit Communications – V1 

In a multi-unit robot, units must be able to communicate with each other to communicate 
movements and how each should react within a certain combined unit. With this in mind and given that 
this project uses ESP32S3 as the mainboard, I decided to use the “ESP Now” Library. This library allows 
unit-to-unit communication through WIFI and multiple channels with relatively low latency. In my 
program, I made one unit the center controller and then that unit will send data to every other unit, telling 
them how to move.  
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Figure 33 - Unit to Unit communication flowchart (single movement repetition) 

5.2.2 Unit-to-Unit Communications – V2 
In the second version of the program, I decided to continue using the “ESP Now” Library. 

However, I added a new class to package the send, receive, and initialization unit. It will automatically set 
itself to a specific channel upon initialization with a parameter. This dramatically improves the simplicity 
of the program as I only need to write this one class and then call it multiple times.  

I also stored the mac address of peers within an array so that it can be called easier instead of 
writing specific mac addresses every time.  

5.2.3 Device-to-Unit Communications – V1 
In this project, I still want to be able to control the robot instead of letting it move forward by 

itself. Therefore, I need a way to transfer commands from my computer to the unit (so that it can move). 
In the first version of my program, I was only concerned about moving one unit at a time with my device. 
The way that I chose to do this is through a new library called “Blinker”. This library allows even faster 
communication over Bluetooth. Although this approach still needs a mainboard as a relay, it is much more 
responsive than “ESP Now” and has a customizable built-in GUI. This approach further reduced the 
latency described in the previous approach and is also easy to use and implement.  
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Figure 34 - Device to Unit communication V1 flow chart 

In the flow chart, the sender establishes connections to multiple units. However, it only controls 
one, but for the convenience of switching which unit to control, all connections are established (or 
attempted because units might be powered off). 

5.2.4 Device-to-Unit Communications – V2 
However, I soon realized that there are actually no point in establishing connections to multiple 

units as it is not like I am switching between units for this purpose. Therefore, I decided to fall back to 
only controlling one unit at a time as well as changing the “ESP Now” library to Blinker (with Bluetooth). 
Theoretically, it can provide a lower response time and, thus, a snappier response. 
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Figure 35 - Device to Unit communication V2 flow chart 

5.2.5 Device-to-Multi-Units Communications 
Then, I wanted to control more than one unit with my one device. One way to accomplish this is 

through the previously mentioned “ESP Now” Library. I was able to hook up an external mainboard and 
make it the center control unit. Then, this center control unit will be able to relay this information to every 
unit in the robot (like unit-to-unit communication in the previous section). Note that device-to-unit 
communication completely replaces the original unit-to-unit communications. The benefit of this method 
is that it is relatively simple to implement, as I already have a functioning “ESP Now” send and receive 
program on each mainboard. However, the downsides are that this introduced double the amount of delay, 
as the information is relayed twice throughout the entire system, and I still need to manually type each 
command into the Serial Input for the Arduino to understand (Which is potentially solvable with a GUI, 
but the method described in the next paragraph is much more efficient).  
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To reduce some of the latency and avoid writing an extra GUI, I decided to use “Blinker” to 
communicate between my device and the mainboard, similar to how the first version of the program 
worked. 

However, the problem with this computer-to-mainboard-to-unit method has a drawback: the 
latency is high. Therefore, I was unable to have the unit break out of motion while doing it. Each motion 
simply does not last very long, and it would not have made a difference.  

 

Figure 36 - Device to multiple units communication flow chart 
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5.3 Multitask Handling 
5.3.1 Benefits of Multitask Handling 

To properly illustrate the benefits of multitasking, we can imagine our normal computer. It is 
great how we can run multiple applications all at once. This is what is known as concurrency. Modern 
computers can achieve this by utilizing multiple cores and having multithreading turned on. However, in 
most Arduino mainboards, such as the ESP32S3, it only has 1 core and 1 available thread. This means 
that under normal circumstances, only one execution can be run at the same time. Therefore, we cannot 
run three commands that all take 1 second to complete at the same time. However, through something 
called FreeRTOS, we can achieve a similar functionality.  

 

5.3.2 Achieving Simultaneous Execution 
To handle multiple tasks simultaneously, I used a built-in functionality in the ESP32S3 mainboard: 

FreeRTOS. FreeRTOS allows custom tasks to be defined to run almost simultaneously, with certain 
limitations. In the program, I defined three custom tasks, each to control a servo based on remote data, 
alongside the data reception task running in the default “void loop()” task. This handling allows 
responsive actions from each unit, not including data transmission delays.  

In order to program the ESP32-S3 with FreeRTOS, I first include the required libraries and then 
define the following function that will be run. After defining this function, I used the FreeRTOS command 
to start this function (also commonly referred to as a task) during “void setup” and set each to its 
respective priority and required memory. Detailed implementation will be discussed in Section 5.4.3. 

 

5.4 Movement Control 
5.4.1 From-Device Movement Control V1 & V2 

When the controller wants the robot to perform certain tasks/movements, they can use the 
abovementioned Device-to-Unit communication method (Section 5.2.2). Operations through the Blinker 
GUI will be wirelessly communicated to the center control board. I used the following code to receive 
data from the Blinker GUI:  
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Figure 37 - Blinker Component Creation 

 

Figure 38 - Sample Blinker Component Handling Function Declaration 

 

Figure 39 - Blinker Component Declaration 

Then, the central control board will send data to the unit (or units), each containing the data for 
them to move. The ESP-Now program is directly called when pressing each button or slider, further 
decreasing the possible latency. 

 

5.4.2 Data Packaging – V1 
In the first version of the program, I was only concerned with driving one unit, so I simply 

transmitted one value at a time. This results in an extreme program. With the “Blinker” Library, I simply 
transmitted each slider value to the robot, which is enough to run it. 
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5.4.3 Data Packaging – V2 
In the second version of the program, when sending remote data, all data are packaged through a 

custom “Struct” written similar to those in C++. This “Struct” contains a unique identifier of each action 
and, based on each unique identifier, data on the specific movement or to trigger certain pre-written 
actions in each unit. Here is the custom Struct containing the data: 

 

Figure 40 - Motor Data Structure 

In this custom struct, integers a, b, and c each represent the position of the servos, and integer 
lock represents the state of the locking motor (for unit connections). Besides, to send data to all 4 units, I 
created an array of this custom structure. Therefore, I can directly change the structure within this array 
and send it to the respective unit. This implementation has a wider expandability than creating a single 
struct for each unit instead of creating an array. This approach allowed the use of a central controller with 
“ESP Now.” 

5.4.4 Motor Control – V1 
In my program, motor control is achieved through 3 simultaneously running tasks (with 

FreeRTOS mentioned previously). Whenever new angles for these motors are received, the program sets 
it to three different variables. Then these 3 simultaneously running tasks will set the servo’s degree to 
these updated values that’s passed into the FreeRTOS program through their parameters.  

5.4.5 Motor Control – V2 
In the next version of the Motor Control program, I did not change too much of the core concept 

and how I achieved the motor control. The only change I made was that instead of passing the parameter 
into the FreeRTOS function every time, I initialized a global variable that contains the angle information 
of the servo. Within each FreeRTOS function, I simply set the motor degree to that global variable. This 
simplifies the program and allows other potential programs to change the servo’s positions more easily, as 
they only need to access this variable. 

Here is the function: 

 

Figure 41 - Motor Control Function Declaration 

This is the FreeRTOS declaration:   
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Figure 42 - FreeRTOS declaration 

 

5.5 Unit Movements 
5.5.1 Overview 

Recall the design of each unit: two joints (one on each end of the unit) that can rotate in the same 
plane and one joint that can rotate in another plane.  

Due to the significant number of limitations for a single unit, the only feasible option to move is 
by alternately rotating the two joints on each end. This creates variety in the friction on both ends, 
allowing the robot to shift slightly forward or backward.  

 

5.5.2 Motion Control Program/ Process 
In order to achieve an effective forward movement, many values, such as the degrees of rotations 

and their respective durations, have been tweaked to achieve optimal performance. Also, moving 
backward simply runs this sequence of movements in reverse order. 

In order for the controller to execute this action, a button press on the Blinker GUI will trigger the 
function to send a signal to the central control. Then, the central control will be able to register this action 
and send an individual signal to the unit containing the degree to which each servo should be. These data 
are sent with the method described in motor control. The only difference is that the forward motion 
program has predefined values stored within an array. So, instead of the user putting values in one 
movement by one movement, the robot can move forward with one click. 

Within each unit, the following function within the “void loop” receives the signal, and the 
FreeRTOS tasks will set the degree of the three servos to their respective value. 
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6 Experiments of Final Version 
6.1 Single Unit Test 

To test the ability of a single unit to move forward, we have to set the following criteria: it is 
moving on a smooth floor without any objects blocking its way. Besides, because of the limitations of a 
single unit and its movement style (by crawling forward), the floor will have a large impact on how much 
a single unit can move.  

The single unit can move forward because of the variety of friction and the relatively smooth 
floor that I test on. In a single unit, I can change the friction at the front or back by rotating the two joints. 
On a rather smooth surface, when a joint is rotated 90 degrees such that the face is facing the floor, it has 
a small friction. However, if the joint is rotated 45 degrees so the face is slanted into the floor, it is nearly 
impossible to drag or push. Therefore, through changing between different states of the front and back 
joints, a single unit with only 2 joints that can rotate vertically to the surface can move forward and 
backward.  

     

Figure 43 - Unit at Time 0.000s           Figure 44 - Unit at Time 0.915s            Figure 45 - Unit at Time 1.149s 

At 1.149 seconds, the 
bottom-most joint of the 
unit starts to reset to 180 
degrees while the front 
continues to rotate to face 
the ground. 

At this stage, the robot is 
being pushed forward 
against the friction. 

At time 0.915 seconds, the 
bottom joint fully rotates to 
face the ground while the top 
joint had just started to rotate. 

Around this stage the robot is 
being dragged forward again 
the friction. This is because of 
the state of the joints (and the 
faces touching the floor), the 
friction on the floor to be 
dragged forward is greater than 
the friction force. 

This is the resting 
state of the robot. All 
joints are at 180 
degrees and flat. 
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Figure 46 - Unit at Time 1.332                     Figure 47 - Unit at Time 1.682s 

 

 

 

 

 

 

 

 

 

At 1.682 seconds, the robot 
completely reset’s its joints and 
the entire unit goes back to 
resting state while moved 
forward approximately 72 
millimeters. (72 cm per cycle is 
an approximate average over all 
attempts, including the one 
shown above) 

During the last stage and this 
stage, the unit is being slightly 
pushed backwards. However, due 
to the angle of the bottom joint, 

At time 1.332 seconds, the 
bottom joint completely 
resets to its beginning 
position while the top joint 
completely faces the 
ground at stays at its 
position. 
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Figure 48 - Single Unit Tracking 

 

Figure 49 - Distance Tracking 

 

Figure 50 - Speed Tracking 

After this sequence of movements, this unit moved forward around 72 millimeters over the span 
of 1.682 seconds. There is no need to perform a backward test as the unit is entirely symmetric over that 
axis, and the ability to move forward is the same as the ability to move backward. 
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6.2 Two Units Test 
 

6.2.1 Movement Calculations 
Overall, in two-unit movements, I will use a standing approach. Therefore, in order to maintain 

its balance, I need to calculate the locations and positions of both units. To do this, I can make use of 
trigonometry and coordinates to represent the entire robot in 3D space.  

 

Figure 51 - Distance Calculations 

 

In this calculation, each grid is 6 centimeters, a circle means a rotatable point, and a vertical line 
means connection between two distinct units. It uses trigonometry to calculate how far each step will 
make under ideal conditions with the current angles. Overall, each step can step forward about 5.6 
centimeters every step. 
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6.2.2 Experimentation 
After experimenting with a single unit’s capabilities, we have to experiment with its capabilities 

when combined with other units. However, due to the special design of the joints, two units do not have 
as much better movement than a single unit.  

 

    Figure 52 - units at Time 0s                        Figure 53 - units at Time 1.116s             Figure 54 - Units at Time 2.398s 

For two units, I’ve decided 
to make it walk straight up. 
This position is attainable 
simply through rotating the 
top two joints from 
completely flat to these 90 
degrees position. Therefore, 
this is its resting state at time 
0. 

The first step of moving 
forward is to rotate the 
back joint such that the 
whole robot can shift its 
center of gravity towards 
the back. This all 
happens while the front 
joint starts to rotate. 

Now the whole robot have 
the entire center of mass at 
the back foot. Therefore, 
the front leg can start to 
extend forward to take a 
step. 
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Figure 55 - Units at Time 3.863s                 Figure 56 - Units at Time 4.513s              Figure 57 - Units at Time 7.828 

 

Overall, the steps are consistent at moving forward and are surprisingly stable, considering the fact 
that no extra balancing is done. However, one minor deficiency of this method of moving forward is that 
it potentially makes the robot end at an angle. Just in this example, while the robot is moving forward, it 
is also slightly rotating. Because of the lack of degrees of freedom and the need to keep the balance, it is 
difficult to adjust for the rotation. 

 

 

 

 

 

 

 

 

 

 

 

 

After about a second, the 
front leg will step down 
and completely touch the 
ground. Meanwhile, the 
back leg pushes the front 
leg forward so it can land 
properly. 

Afterwards the back leg pushes 
the entire robot forward to add 
to the distance that it travels in 
one step. Besides, this step is 
also necessary because we have 
to move the back leg forward 
(to an overall resting state). 

Finally, the back leg gets 
dragged forward to back to a 
resting state. All of this 
process happens within 8 
seconds and moves forward 
around 9 to 10 centimeters on 
average. 
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6.3 Four Units Tests 
As more units are attached together, more functionalities can be achieved. Now, it can swiftly 

rotate/turn on the spot, move forward in a straight line, and move forward on an angle. 

6.3.1 Four Units Turn Tests 

 

  Figure 58 - Units at Time 0s                     Figure 59 - Units at Time 0.677               Figure 60 - Units at Time 1.428s 

 

 

 

 

 

Figure 61 - Units at Time 1.845s        Figure 62 - Units at Time 2.827s                  Figure 63 - Units at Time 3.877s 

 

After moving the outmost 
joints back its initial 
positions, the robot is now 
again in resting position. 

Then the robot flattens the 
center joints to rotate the 
robot. 

After, the robot will lift 
its center up so only the 
4 outmost faces for on 
the ground. 

Then the robot bends all of 
the middle joints for the 
robot turn on the spot. It is 
worth noting that through 
changing the direction of 
these rotations and the 
degrees, we can control 
how much the robot the 
turns and to which 
direction. 

The first step towards 
turning is to turn all of 
the outmost joints to 
facing the ground. 

This is the initial resting 
state for the robot. 
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Overall, this on-the-spot turn is pretty good. It can turn about 45 degrees in around 4 seconds. 
This turning angle is also controllable by controlling how much the servo turns before lifting the center of 
the robot up. This approach is pretty effective for robots like this. 

6.3.2 Four Units Forward Tests 
 

 

Figure 64 - Units at Time 0s                  Figure 65 - Units at Time 0.715s             Figure 66 - Units at Time 1.267s 

 

Figure 67 - Units at Time 2.168s          Figure 68 - Units at Time 2.749s 

 

 

 

This is the initial resting 
position of the 4-unit 
robot. 

Like rotating on the spot, 
the robot first turn all 
outmost joint to face the 
floor. 

Unlike rotating on the spot, 
two arms on the side rotates 
90 degrees to the direction 
that it is going to. 

The robot than lift its center off of the 
floor and rotate both arms back 
straight, which moves the robot 
forward. 

It then quickly rests all of the joints 
back to their resting positions. 
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Overall, the robot is capable of moving forward 14 centimeters within 3 seconds, which is quite 
effective. The amount of forward movement is also controllable by changing the degree to which the side 
arms are rotated forward. 

 

6.4 Servo Strength Test 
6.4.1 Overview 

In this section, I measured the maximum weight that each servo within a single unit can lift (rotate). 
For convenience of the project. I will only be testing the capabilities of one joint, as mathematical 
equivalence could be drawn with a few formulas. Please do note that this testing data may vary based on 
batteries and how charged it is.  

6.4.2 Servo Strength Results 

 

Figure 69 - Force Testing 1.4KG, Unraised 

 

Figure 70 - Force Testing 1.4KG, Raised 

 

0.7KG Weight Passed 
1.2KG Weight Passed 
1.4KG Weight Passed 
1.9KG Weight Failed 
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Figure 71 - Force Testing Result Table 

 

 

Finally, it’s able to raise weight about 1.4 kilograms. From this result, we can tell that despite this 
joint doesn’t have too much issue rotating with heavy items on its side. It’s also not strong enough for this 
singular servo to rotate an entire 4-unit robot completely by itself, if given support. 

 

6.4.3 Analysis 
Overall, this joint can rotate despite weight and when multiple of them are working at once, can move 

robot pretty quickly. Besides, when the center mass of the rest of the component is further away from the 
servo, we know from physics that this servo will be able to rotate less weight (especially against gravity). 
However, because I’m still using a relatively weak servo, it cannot drive many units simply by itself. 
Therefore, this will limit some movements. 
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7 Conclusion 
In conclusion, these sets of experiments demonstrated the abilities of this robot, whether it is usage in 

a single unit, two units, or four units. It is capable of moving in different directions and with different 
movement styles. Besides, as more time is invested into this project, more movement patterns and 
possibly more effective ones will be discovered, which fully demonstrates the potential of this project. 
Also, its expandability makes it perfect for dealing with unexpected events or conquering different 
terrains compared to those with wheels. In the future of this project, the controlling software between 
units can definitely be improved. Currently, as mentioned, they are only capable of moving in predefined 
groups. However, with improvements in software control, they are capable of much more, such as 
movement with different configurations and faster communication between units. Besides, the mechanical 
design can also be improved. It would most definitely benefit from properly machined components, as 
well as a stronger motor, a revamped joint design, and much more.  

 

7.1 Future Outlook 
In the future, this project can be expanded to include many aspects and be used in many different 

fields. For example, this type of robot can be made with smaller components to go through crevices in 
post-disaster scenarios. These robots can also solidify each joint and have stronger motors for it to be used 
as robotic arms in factories that require less precision. They can also be made with a variety of probes and 
sensors to map the world in the wildest of forests. 

Besides modifications and add-ons to the physical structure, improvements can also be made to the 
software side. The current project utilizes a single center control board that, in fact, does not control a unit 
itself. If possible, we can make a mainboard on one of the units as the center control board, which 
mitigates the problem of needing an extra board. Besides, we can also allow units to make a “cluster,” and 
within each “cluster,” a board will be selected as the main control board. This approach alleviates the 
processing power required for the center control board but requires faster communication between these 
boards to sync their actions. 

In the broader theme of application for this project, it’s clear that it has potential. For example, this 
system of modularity can be applied to robots that might require constant repairs from potential damage, 
as well as robots that requires wide adaptability from changing components. The base of modular robotics 
can also be joined with other innovations, such as soft robotics, to reach even wider possibilities.  
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