
1

Multi-Unit Reconfigurable Robot

2

Abstract

As an innovative type of robotic system, reconfigurable robots have the ability to change their
physical configuration or shape to adapt to various environmental requirements. Compared with their
traditional counterparts, these robots can perform tasks in unpredictable, constantly evolving, and
dangerous environments more effectively, e.g., conducting search and rescue operations in disaster zones
or exploring uncharted territories. Previous or ongoing research in reconfiguration robots has primarily
focused on improving modularity, flexibility, and efficacy. In this project, though, we aim to design a
novel modular construction for reconfigurable robots, which depend on specifically designed joints to
allow the robot to accommodate even more types of surfaces in extreme environments. Our system
consists of multiple units, each having three joints and providing great versatility to alleviate energy loss.
By mimicking animal joints, our joints can perform more movements. Our research has shown that our
innovatively designed and integrated hardware and software with modular construction exhibits the
ability to move in a single unit, two units, or four units to adapt to a greater variety of challenging tasks. A
single unit can move at a speed of around seven centimeters in slightly less than two seconds, and when
four units are combined, it can move at a speed of around fourteen centimeters in three seconds. Besides,
this system of multi-unit and reconfigurability can be expanded to create robots that are capable of
different tasks, such as robotic arms. Also, when combined with other current technologies, it can even be
used more widely.

Keywords: Reconfigurable, Multi-Unit, Multiunit Software Control, Modular Robotics

3

Table of Contents

Multi-Unit Reconfigurable Robot ... 1

Abstract ... 2

Table of Contents .. 3

1 Introduction ... 6

1.1 Background .. 6

1.2 Current State of the Study ... 6

2 Design Plan ... 9

2.1 Modularity ... 9

2.2 Options of Multi-unit Connections and Sided Connections .. 9

2.3 Programming and Hardware Choices .. 9

3 Mechanical Structure Design .. 10

3.1 Overall Structure ... 10

3.2 Unit Design .. 10

3.2.1 Material Choice ... 10

3.2.2 Subunit/Joint Design ... 10

3.2.3 Servo MounƟng Mechanism ... 11

3.2.4 Subunit ConnecƟons ... 13

3.3 Connector Motor Mounting Mechanism ... 14

3.4 Connector and Receptor Design .. 14

4 Hardware/ Electronic Design .. 17

4.1 Hardware Choices ... 17

4.1.1 Mainboard ... 17

4.1.2 Servo .. 18

4.1.3 Motor .. 18

4.1.4 BaƩery ... 19

4.2 PCB Design ... 19

4.2.1 Power Supply/Management Unit ... 19

4.2.2 Motor Control Unit .. 19

4.2.3 Servo Control Unit ... 20

4.2.4 Mainboard ConnecƟon Unit .. 20

4.2.5 Final PCB .. 21

4

5 Software Design/ Programming .. 24

5.1 Overview - Arduino ... 24

5.2 Wireless Communications ... 24

5.2.1 Unit-to-Unit CommunicaƟons – V1 ... 24

5.2.2 Unit-to-Unit CommunicaƟons – V2 ... 25

5.2.3 Device-to-Unit CommunicaƟons – V1 ... 25

5.2.4 Device-to-Unit CommunicaƟons – V2 ... 26

5.2.5 Device-to-MulƟ-Units CommunicaƟons ... 27

5.3 Multitask Handling .. 29

5.3.1 Benefits of MulƟtask Handling .. 29

5.3.2 Achieving Simultaneous ExecuƟon ... 29

5.4 Movement Control ... 29

5.4.1 From-Device Movement Control V1 & V2 .. 29

5.4.2 Data Packaging – V1 .. 30

5.4.3 Data Packaging – V2 .. 31

5.4.4 Motor Control – V1 ... 31

5.4.5 Motor Control – V2 ... 31

5.5 Unit Movements .. 32

5.5.1 Overview ... 32

5.5.2 MoƟon Control Program/ Process .. 32

6 Experiments of Final Version .. 33

6.1 Single Unit Test ... 33

6.2 Two Units Test ... 36

6.2.1 Movement CalculaƟons .. 36

6.2.2 ExperimentaƟon .. 37

6.3 Four Units Tests ... 39

6.3.1 Four Units Turn Tests .. 39

6.3.2 Four Units Forward Tests .. 40

6.4 Servo Strength Test .. 41

6.4.1 Overview ... 41

6.4.2 Servo Strength Results .. 41

6.4.3 Analysis .. 42

7 Conclusion .. 43

7.1 Future Outlook ... 43

5

8 References ... 44

6

1 Introduction

1.1 Background
As the demand for robots continues to expand and application scenarios become increasingly

complex and diverse, the adaptability requirements for robots are also increasing. These special needs
have given birth to modular robots, which have become an important branch of robot technology.

Modular reconfigurable robots are composed of a group of individual units through various ways of
connectivity. Rigid connections are established between the modules mechanically or magnetically,
forming tight connections. Through the contraction, extension, rotation, and other motion modes of joints
within each unit, the entire robot can achieve more flexible mobility and adapt to complex environments.
In this structure, the coupling between modules and the design of the joints is crucial for the system’s
overall functionality. The modules can have various shapes, such as square, polyhedral, sheet-like,
cylindrical, etc. Through combination, different motion effects can be achieved. [1]

In these systems of units, each module has more flexible mobility. The greater the degrees of freedom
of a module, the more flexible its motion will be. However, these systems’ mechanical design and motion
control become substantially more complex.

Besides simple mobility, modules can be selectively made (provided they have proper connection
methods) for the robot, such as object holding, transportation wheels, photography cameras, distance and
color sensing, environmental data testing, etc. Under such a modular framework, modules can be freely
assembled to meet various requirements or be modified on the fly.

1.2 Current State of the Study
One of the studies looked at the connection between units for robot arms in an industrial setting. It

includes complicated PCB designs and sturdy locking mechanisms to guarantee a tight connection
between robot arms. In a research paper published on October 28, 2020, called “Intelligent Modularized
Reconfigurable Mechanisms for Robots: Development and Experiment,” authors Wenfu Xu, Liang Han,
Xin Wang, and Bin Liang argue that traditional industrial manipulators with a single configuration are
difficult to meet a variety of tasks now required in factories. Therefore, they investigated the types of
joints that could be used in reconfigurable robot arms. They compared two lightweight connection
mechanisms with each other. [2]

Figure 1 - Reconfigurable Robot Arms

7

On the other hand, these types of joints are not necessarily used in moving parts or robots. Some
researchers apply this modular idea with sturdy joints and apply it to stationary, non-moving objects, such
as buildings. Such as the research called “Mechanical Behaviors of Inter-Module Connections and
Assembled Joints in Modular Steel Buildings: A Comprehensive Review.” This study creates an overview
of the methods for creating inter-module connections. This modular approach to building allows a more
time-saving approach to building, reduces on-site work, and wastes fewer resources during such
processes. [3]

Figure 2 - Joints in Modular Steel Buildings

SWARM-bots were researched and designed by Dr. Marco Dorigo of the Free University of Brussels
in Belgium. The SWARM-bot system adopts a track mode and communicates through communication
modules, enabling robots to aggregate, work collaboratively, allocate tasks, self-assemble, and navigate.
SWARM-bots robots dock using grippers. [4, 5] SWARM-bots can accomplish tasks that individual s-bot
robots cannot. The following figure shows multiple s-bot robots in a series completing tasks such as
crossing a ravine and climbing stairs.

Figure 3 – Swarm-bots

Figure 4 - Small-Sized Modular Robot

Another study uses magnetic connections instead of mechanical joints. This increases the tolerance
when two units connect but only compensates for a weaker connection. In the Smores-Ep module,
researchers used magnets to align units together and enabled the joint itself to rotate. [6]

8

Figure 5 - SMORES-EP Module with Rotatable Connectors

While some studies dive deep into different joint styles and how to stabilize connections between
units, other researchers also investigated algorithms to facilitate multi-unit control when they form into a
single unit. For example, “Scalable multi-radio communication in modular robots” by V. Kuo and R. Fitch
presented a multi-radio architecture for communication in modular robots capable of scaling and constant
bandwidth neighbor-to-neighbor communication. In the research, the researchers used wireless RF links
as the primary source of connection and validated the approach using a 45-radio testbed with real data
loads. [7]

Another important and distinguishing characteristic of modular robots is that they are often capable
of self-reconfiguration based on the environment and task (meaning they can reconfigure their
arrangement without human or external assistance or interference). Often, many such rearrangement
sequences will all result in the desired outcome, but the best method is always the one with the least
amount of attachment and detachment. This is because the fewer actions, the less likely something will
malfunction. In an article called “Auto-Optimizing Connection Planning Method for Chain-Type Modular
Self-Reconfiguration Robots,” the authors, H. Luo, and T. L. Lam, proposed an algorithm that can auto-
optimize connection plannings for multiple in-degree single out-degree modules. The solution contains a
polynomial-time algorithm to calculate near-optimal solutions and an exponential-time algorithm to
further optimize the solutions automatically when some CPUs are idle. [8]

9

2 Design Plan
2.1 Modularity

The aim of this project is to create a robot that can traverse all sorts of terrain with great flexibility.
Section 1.2 shows that if we make the robot modular, it will have this flexibility. The robot will also need
to move itself to some extent, and there are two options. The first is to create connectors that can move
and rotate. The Second option is to develop non-moving connectors and make each module itself movable
with joints.

The first option is easily viable with electro-magnet joints. Although such a joint creates relatively
strong connections and great versatility, it consumes a lot of power while generating a lot of additional
heat.

Although such a connection is also achievable through complicated mechanical structures, such
structures would provide many points of weakness that, without expansive and high-strength materials,
would be easy to break.

On the other hand, the second option traded off some movement margins to gain much stronger
mechanical joints that are less likely to break or fail. I ultimately decided to choose this option over the
previous one.

2.2 Options of Multi-unit Connections and Sided Connections
Since I decided to create a modular robot, we need to consider how they can connect with each other.

The first type of connection required is one that forms a snake-like shape. This allows the robot to crawl
forward and squeeze into tiny cracks. Besides, since the robot needs to be able to stand up and traverse, it
is necessary for different modules to connect to each other from the sides. This connection allows the
robot to stand up from the supports of all four sides.

2.3 Programming and Hardware Choices
In this project, the program has to be uncomplicated and quickly deployable while also having wide

compatibility for all sorts of motors, servos, and sensors and being capable of remote communication.
Therefore, I decided to go with Arduino. Arduino is an open-source electronics platform that combines
both hardware and software. It revolves around Arduino boards, which are physical, programmable circuit
boards (also often referred to as microcontrollers). These boards can read inputs from the environment—
such as light detected by a sensor, a button press, or remote communications—and translate these inputs
into outputs. Outputs might include activating a motor, turning on an LED, or sending a message through
special channels. The Arduino Software (IDE) serves as an Integrated Development Environment for
writing and uploading computer code to the physical Arduino board. The programming language is
similar to C++ and Java; therefore, it is relatively simple to learn and start (although I already have a lot
of experience with it). All of these features combined made Arduino the perfect option for this project.

10

3 Mechanical Structure Design
3.1 Overall Structure

As previously mentioned in section 2.1, the robot needs to be modular. Therefore, there must be units
that can connect to each other and be able to move and change their shape. Also, each unit must be able to
move itself. Therefore, I have decided to use 3 joints for each unit, 2 of which are in the same direction.
This allows each unit to crawl forward pretty quickly. There are also connectors (one male and one
female) on both ends of the robot. However, due to the type of connection I mentioned in section 2.1, two
sides of the connector will be different: one male side and one female side.

The entire structure will be 3D printed with the single exception of the plate holding the motor for the
connector, which is laser printed because it is mostly flat and is unnecessary to be 3D printed.

Besides, I also made different versions of different parts of the mechanical structure, as I think those
could be improved. For example, I improved the subunit junctions, and how they would be more securely
connected to each other through the rotational joints. These versions will be described in each section,
which represents the specific part of the robot.

3.2 Unit Design
3.2.1 Material Choice

Since this project requires a rigid, 3D-printed chassis, the material must be 3D printable, sturdy,
and bend-resistant. With the budget of this project in mind, the best materials that satisfy this need are
PETG plastic and PLA plastic. PLA is known for its strength while being beginner-friendly and
inexpensive, while PETG is known for its superior mechanical properties and impact resistance.

In the first two units of the robot, I used PLA plastic as it is the most frequently used plastic in 3D
printing. It turned out well, but the overall structure is still bendable. Therefore, I printed the next two
units with PETG plastic. Despite the support being more challenging to take off, the overall structure of
the units is more stable and resistant to bending and warping. I ended up not changing the over PLA for
PETG because when I compared them side to side, it seemed that the direction of the print mattered more
than my material choice, so I simply reoriented my 3D models in the printing software and reprinted
them.

3.2.2 Subunit/Joint Design
Each unit is ultimately made out of 3 similar subunits, each containing one 270-degree servo, a

joint, and various connection types depending on whether it is a subunit on the side or in the center. This
design would give each unit 3 degrees of freedom and the ability to move. Each subunit is then made
from 2 U-shaped pieces. This design guarantees the integrity of the overall structure and the functionality
of each subunit.

In the first functional prototype, I used a joint design with a plate that connects directly to the
servo, which provides the power for rotation. However, in practice, I observed that this piece would
actually tilt sideways because two joints are only connected via one link (and a not very stable one at
best). Therefore, in the second version, I decided to add another link on the other side of the joint. This
linkage will help support the connection and create more table joints.

11

Figure 6 - Joint V1

Figure 7 - Joint V2

3.2.3 Servo Mounting Mechanism
One of the three servos is mounted directly to one of the U-shaped plates of the subunit with 4

screws that penetrate through the subunit and extends into the other subunit. This method of connection
additionally acts as a connection between subunits.

Because of the design and each subunit need to connect to each other, two of the servos share the
same screw that penetrates 2 U-shaped plates of different subunits. This also acts as a connection between
subunits.

12

Figure 8 - Servo Mounting Base

Figure 9 - Servo Mounting Plate

13

Figure 10 - Servo Mounting Positions

However, when the product is built, I cannot fully use all 4 screws because it is extremely
difficult to squeeze long screws through the small opening it has and more difficult to tighten them with
screwdrivers.

3.2.4 Subunit Connections
All subunits within each unit are connected to their neighbor/ neighbors with at least 4 screws on

the connection side and an additional connection in the middle through the motor mounting positions (as
seen in section 3.2.3). These screws guarantee the tightness of the connections and lock rotations on the
connection plane.

Figure 11 - Subunit Connections

14

3.3 Connector Motor Mounting Mechanism
This is only applicable to the male connector side of each unit. Each unit will have one N20 motor

mounted to one end. The N20 motor is secured on a laser-printed plywood piece with a C-bracket, which
is then secured to the robot through 4 standoffs at the corner of the plywood piece and the robot. The
screws stick outwards of the end of the robot and act as anchors to lock the rotation of the two connecting
pieces on the connection plane.

Figure 12 - Motor Mounting Plate

3.4 Connector and Receptor Design
This only applies to the two subunits at both ends of each unit. For the receptor end, there are four

enlarged screw holes at the four corners of the face and a large opening at the center for successful
connection. The four enlarged screw holes are designed to be just bigger than the size of the screws on the
connector side. They stop the two connected units from rotating on the plane parallel to the two faces.

Figure 13 - Connector face with screw holes circled in red

15

Figure 14 - Connection face

In this first version, the units can only be connected in a chain, not yet having the capabilities to
connect sideways and allow for wider arrangement capabilities since there are no connectors on the side
of the unit.

Then, in the second version, I created a large center opening on the sides of where the subunits
initially connect and used a soldering iron to melt part of the sides off the subunit to act as screw holes.
This allows additional connections on the sides of the original connection. This allows the robot to
become a complete four-legged robot, which offers much more freedom of movement and greater
mobility than just simply connecting it to form a line. Besides, despite the fact that part of the unit was cut
off, it did not impair much of its structural integrity.

Figure 15 - Side connections formed by two units

16

Figure 16 - Possible configuration with side connectors

17

4 Hardware/ Electronic Design
4.1 Hardware Choices
4.1.1 Mainboard

For this project, the mainboard must be powerful enough for fast communication through WIFI
and BLE, with enough pins for 3 servos (each requires a 5V, a GND, and a GPIO pin) and 1 motor (it
requires 2 GPIO pins). It also needs to be small enough to be placed nicely into a PCB smaller than 65mm
* 60mm with many other components because of space limitations. Given such requirements, one option I
considered is the Arduino Nano board. Despite being small enough to be placed into the PCB and have
the power to compute that data, it lacks WIFI and Ble, which then requires additional pieces on the PCB
that have no room.

Figure 17 - Arduino Nano

Another option is ESP32. It is also small enough to be placed into the PCB while also having
WIFI and BLE. However, it does not have enough flash for the program that I need to upload with both
WIFI and BLE.

Figure 18 - Regular ESP32

 Then, I finally landed on a variant of ESP32: ESP32-S3. It has a bigger flash and bigger RAM,
which is enough for me to upload my program while having every other feature that I need for this
project. It is indeed the best fit for this project.

18

Figure 19 - Luatos ESP32-S3

4.1.2 Servo
The servo needs to have enough strength to lift the entire robot with 4 units in the future. The

further away the center of mass is from the servo, and the heavier the robot gets, the harder it would be
for the servo to lift the robot. We can approximate the force required for each servo such that they are
enough to raise the end of the unit (with 1 other unit attached).

For the purpose of this project, I chose a servo that has a torque of 25, which is ideally enough for
lifting the entire equipment.

Figure 20 - Dsservo digital servo 25KG

4.1.3 Motor
The motor is used to spin the connector piece to connect two subunits, as stated in section 3.4. It

needs to be strong enough to spin the connector piece with a lot of friction and tighten it so that the two
pieces would not be loosely connected. For the purpose of this project, I chose an N20 motor with a high
torque ratio. The N20 motor uses 12V power and spins at a speed of 1 rotation every 2 seconds. This
allows the motor to spin reliably from the current and power provided by the power supply.

19

Figure 21 - N20 motor with a torque gear ratio

4.1.4 Battery
The Battery mainly needs to satisfy two requirements: rechargeable and small enough to fit into the

unit. In the end, I chose a battery with a somewhat small capacity, but it satisfies both of the requirements
I set.

Figure 22 - 12V, 1200mAH Battery

4.2 PCB Design
4.2.1 Power Supply/Management Unit

This is the part of the PCB where the battery is connected to. It helps supply 12V power to the
motor while providing 5V power to the mainboard through L7805 and servos through another 5V down-
volt chip. This unit helps guarantee every unit on the PCB is sufficiently powered and can run regularly.

Figure 23 - Power Management/Supply Schematic

4.2.2 Motor Control Unit
Since the motor needs 12V power and two PWM inputs from the mainboard (ESP32-S3), it

requires a special unit to control it. This unit provides power for the motor directly from the battery while
also receiving information on which direction to spin from the mainboard.

20

Figure 24 - Motor Control Schematic

4.2.3 Servo Control Unit
The servos are controlled with 5V power and a single PWM input from the mainboard. Therefore,

a special unit is required to convert the 12V power from the battery to 5V, which the servo can use. The
unit also takes input from the mainboard and allows the connected servo to turn to the input degree.

Figure 25 - Servo Control Schematic

4.2.4 Mainboard Connection Unit
This section did not exist in the first version of the mainboard because I did not think I would

need other expansions for other components. However, I later thought about further expendabilities for
my project, so I added these connection units. This allows expansions like cameras, etc.

This will mount the mainboard to the PCB and control everything. Besides all the pins used by
the units mentioned above, there are also leftover pins. I then extended these pins to a centralized location
for future use and additional hardware connections. I also added an indication light on whether if the
mainboard have power or not (it does not necessarily mean that the Servos and Motor are powered).

Figure 26 - Leftover Pins Schematic

21

Figure 27 - Mainboard and Indication Light Schematic

4.2.5 Final PCB
This is the overall PCB schematic and the final product after finalizing the layout of the PCB.

Figure 28 - Overall PCB Schematic

This is what the printed-out PCB looks like without any components attached. It only includes the
raw circuits and labels left on the PCB. The arrows on the PCB indicate which way the component should
be mounted, while some, such as a resistor, can be mounted in both directions.

22

Figure 29 - PCB Product Without Components

The process of attaching various components is complicated. The first step is to solder on every
surface-mounted device (SMD). This process requires some soldering paste (essentially powered solder
suspended in flux paste) and a heating table. I first applied a moderate amount of solder to every place
that needed to be soldered on the PCB and gently placed all the components on top of the paste without
pushing them too hard. Then I placed it on top of the heating table, which heated up to about 230 degrees
Celsius. I waited for a while and corrected every piece that needed realignment. After about 4 minutes, I
took the PCB off of the heating table while making sure it would not tilt.

Figure 30 - PCB With Every Surface Mounted Component

After letting it cool for about 5 minutes, I soldered every through-hole component (THC) to their
respective locations on the PCB.

23

Figure 31 - PCB with every component

24

5 Software Design/ Programming
5.1 Overview - Arduino

In this project, I chose to use Arduino and its related libraries to control the robots. I used Arduino
with specialized libraries and custom-defined header files and functions to achieve various functionalities,
such as wireless communication between units, Bluetooth communication from devices to robotics, and
accurate robot movements with PID control.

To write the program, compile, and upload the code, I chose Visual Studio Code and Platform IO, as
they provide the best functionalities and versatility for this project.

Figure 32 - Platform IO in Visual Studio Code

I also created two versions of the program and used version control. In the first version, my code is
rather simple and aimed at achieving all the basic functionalities without having a too complicated
program. In the second version, I revised most of the modules in the first version and added additional
functionalities and features so that it would be more usable.

5.2 Wireless Communications
5.2.1 Unit-to-Unit Communications – V1

In a multi-unit robot, units must be able to communicate with each other to communicate
movements and how each should react within a certain combined unit. With this in mind and given that
this project uses ESP32S3 as the mainboard, I decided to use the “ESP Now” Library. This library allows
unit-to-unit communication through WIFI and multiple channels with relatively low latency. In my
program, I made one unit the center controller and then that unit will send data to every other unit, telling
them how to move.

25

Figure 33 - Unit to Unit communication flowchart (single movement repetition)

5.2.2 Unit-to-Unit Communications – V2
In the second version of the program, I decided to continue using the “ESP Now” Library.

However, I added a new class to package the send, receive, and initialization unit. It will automatically set
itself to a specific channel upon initialization with a parameter. This dramatically improves the simplicity
of the program as I only need to write this one class and then call it multiple times.

I also stored the mac address of peers within an array so that it can be called easier instead of
writing specific mac addresses every time.

5.2.3 Device-to-Unit Communications – V1
In this project, I still want to be able to control the robot instead of letting it move forward by

itself. Therefore, I need a way to transfer commands from my computer to the unit (so that it can move).
In the first version of my program, I was only concerned about moving one unit at a time with my device.
The way that I chose to do this is through a new library called “Blinker”. This library allows even faster
communication over Bluetooth. Although this approach still needs a mainboard as a relay, it is much more
responsive than “ESP Now” and has a customizable built-in GUI. This approach further reduced the
latency described in the previous approach and is also easy to use and implement.

26

Figure 34 - Device to Unit communication V1 flow chart

In the flow chart, the sender establishes connections to multiple units. However, it only controls
one, but for the convenience of switching which unit to control, all connections are established (or
attempted because units might be powered off).

5.2.4 Device-to-Unit Communications – V2
However, I soon realized that there are actually no point in establishing connections to multiple

units as it is not like I am switching between units for this purpose. Therefore, I decided to fall back to
only controlling one unit at a time as well as changing the “ESP Now” library to Blinker (with Bluetooth).
Theoretically, it can provide a lower response time and, thus, a snappier response.

27

Figure 35 - Device to Unit communication V2 flow chart

5.2.5 Device-to-Multi-Units Communications
Then, I wanted to control more than one unit with my one device. One way to accomplish this is

through the previously mentioned “ESP Now” Library. I was able to hook up an external mainboard and
make it the center control unit. Then, this center control unit will be able to relay this information to every
unit in the robot (like unit-to-unit communication in the previous section). Note that device-to-unit
communication completely replaces the original unit-to-unit communications. The benefit of this method
is that it is relatively simple to implement, as I already have a functioning “ESP Now” send and receive
program on each mainboard. However, the downsides are that this introduced double the amount of delay,
as the information is relayed twice throughout the entire system, and I still need to manually type each
command into the Serial Input for the Arduino to understand (Which is potentially solvable with a GUI,
but the method described in the next paragraph is much more efficient).

28

To reduce some of the latency and avoid writing an extra GUI, I decided to use “Blinker” to
communicate between my device and the mainboard, similar to how the first version of the program
worked.

However, the problem with this computer-to-mainboard-to-unit method has a drawback: the
latency is high. Therefore, I was unable to have the unit break out of motion while doing it. Each motion
simply does not last very long, and it would not have made a difference.

Figure 36 - Device to multiple units communication flow chart

29

5.3 Multitask Handling
5.3.1 Benefits of Multitask Handling

To properly illustrate the benefits of multitasking, we can imagine our normal computer. It is
great how we can run multiple applications all at once. This is what is known as concurrency. Modern
computers can achieve this by utilizing multiple cores and having multithreading turned on. However, in
most Arduino mainboards, such as the ESP32S3, it only has 1 core and 1 available thread. This means
that under normal circumstances, only one execution can be run at the same time. Therefore, we cannot
run three commands that all take 1 second to complete at the same time. However, through something
called FreeRTOS, we can achieve a similar functionality.

5.3.2 Achieving Simultaneous Execution
To handle multiple tasks simultaneously, I used a built-in functionality in the ESP32S3 mainboard:

FreeRTOS. FreeRTOS allows custom tasks to be defined to run almost simultaneously, with certain
limitations. In the program, I defined three custom tasks, each to control a servo based on remote data,
alongside the data reception task running in the default “void loop()” task. This handling allows
responsive actions from each unit, not including data transmission delays.

In order to program the ESP32-S3 with FreeRTOS, I first include the required libraries and then
define the following function that will be run. After defining this function, I used the FreeRTOS command
to start this function (also commonly referred to as a task) during “void setup” and set each to its
respective priority and required memory. Detailed implementation will be discussed in Section 5.4.3.

5.4 Movement Control
5.4.1 From-Device Movement Control V1 & V2

When the controller wants the robot to perform certain tasks/movements, they can use the
abovementioned Device-to-Unit communication method (Section 5.2.2). Operations through the Blinker
GUI will be wirelessly communicated to the center control board. I used the following code to receive
data from the Blinker GUI:

30

Figure 37 - Blinker Component Creation

Figure 38 - Sample Blinker Component Handling Function Declaration

Figure 39 - Blinker Component Declaration

Then, the central control board will send data to the unit (or units), each containing the data for
them to move. The ESP-Now program is directly called when pressing each button or slider, further
decreasing the possible latency.

5.4.2 Data Packaging – V1
In the first version of the program, I was only concerned with driving one unit, so I simply

transmitted one value at a time. This results in an extreme program. With the “Blinker” Library, I simply
transmitted each slider value to the robot, which is enough to run it.

31

5.4.3 Data Packaging – V2
In the second version of the program, when sending remote data, all data are packaged through a

custom “Struct” written similar to those in C++. This “Struct” contains a unique identifier of each action
and, based on each unique identifier, data on the specific movement or to trigger certain pre-written
actions in each unit. Here is the custom Struct containing the data:

Figure 40 - Motor Data Structure

In this custom struct, integers a, b, and c each represent the position of the servos, and integer
lock represents the state of the locking motor (for unit connections). Besides, to send data to all 4 units, I
created an array of this custom structure. Therefore, I can directly change the structure within this array
and send it to the respective unit. This implementation has a wider expandability than creating a single
struct for each unit instead of creating an array. This approach allowed the use of a central controller with
“ESP Now.”

5.4.4 Motor Control – V1
In my program, motor control is achieved through 3 simultaneously running tasks (with

FreeRTOS mentioned previously). Whenever new angles for these motors are received, the program sets
it to three different variables. Then these 3 simultaneously running tasks will set the servo’s degree to
these updated values that’s passed into the FreeRTOS program through their parameters.

5.4.5 Motor Control – V2
In the next version of the Motor Control program, I did not change too much of the core concept

and how I achieved the motor control. The only change I made was that instead of passing the parameter
into the FreeRTOS function every time, I initialized a global variable that contains the angle information
of the servo. Within each FreeRTOS function, I simply set the motor degree to that global variable. This
simplifies the program and allows other potential programs to change the servo’s positions more easily, as
they only need to access this variable.

Here is the function:

Figure 41 - Motor Control Function Declaration

This is the FreeRTOS declaration:

32

Figure 42 - FreeRTOS declaration

5.5 Unit Movements
5.5.1 Overview

Recall the design of each unit: two joints (one on each end of the unit) that can rotate in the same
plane and one joint that can rotate in another plane.

Due to the significant number of limitations for a single unit, the only feasible option to move is
by alternately rotating the two joints on each end. This creates variety in the friction on both ends,
allowing the robot to shift slightly forward or backward.

5.5.2 Motion Control Program/ Process
In order to achieve an effective forward movement, many values, such as the degrees of rotations

and their respective durations, have been tweaked to achieve optimal performance. Also, moving
backward simply runs this sequence of movements in reverse order.

In order for the controller to execute this action, a button press on the Blinker GUI will trigger the
function to send a signal to the central control. Then, the central control will be able to register this action
and send an individual signal to the unit containing the degree to which each servo should be. These data
are sent with the method described in motor control. The only difference is that the forward motion
program has predefined values stored within an array. So, instead of the user putting values in one
movement by one movement, the robot can move forward with one click.

Within each unit, the following function within the “void loop” receives the signal, and the
FreeRTOS tasks will set the degree of the three servos to their respective value.

33

6 Experiments of Final Version
6.1 Single Unit Test

To test the ability of a single unit to move forward, we have to set the following criteria: it is
moving on a smooth floor without any objects blocking its way. Besides, because of the limitations of a
single unit and its movement style (by crawling forward), the floor will have a large impact on how much
a single unit can move.

The single unit can move forward because of the variety of friction and the relatively smooth
floor that I test on. In a single unit, I can change the friction at the front or back by rotating the two joints.
On a rather smooth surface, when a joint is rotated 90 degrees such that the face is facing the floor, it has
a small friction. However, if the joint is rotated 45 degrees so the face is slanted into the floor, it is nearly
impossible to drag or push. Therefore, through changing between different states of the front and back
joints, a single unit with only 2 joints that can rotate vertically to the surface can move forward and
backward.

Figure 43 - Unit at Time 0.000s Figure 44 - Unit at Time 0.915s Figure 45 - Unit at Time 1.149s

At 1.149 seconds, the
bottom-most joint of the
unit starts to reset to 180
degrees while the front
continues to rotate to face
the ground.

At this stage, the robot is
being pushed forward
against the friction.

At time 0.915 seconds, the
bottom joint fully rotates to
face the ground while the top
joint had just started to rotate.

Around this stage the robot is
being dragged forward again
the friction. This is because of
the state of the joints (and the
faces touching the floor), the
friction on the floor to be
dragged forward is greater than
the friction force.

This is the resting
state of the robot. All
joints are at 180
degrees and flat.

34

Figure 46 - Unit at Time 1.332 Figure 47 - Unit at Time 1.682s

At 1.682 seconds, the robot
completely reset’s its joints and
the entire unit goes back to
resting state while moved
forward approximately 72
millimeters. (72 cm per cycle is
an approximate average over all
attempts, including the one
shown above)

During the last stage and this
stage, the unit is being slightly
pushed backwards. However, due
to the angle of the bottom joint,

At time 1.332 seconds, the
bottom joint completely
resets to its beginning
position while the top joint
completely faces the
ground at stays at its
position.

35

Figure 48 - Single Unit Tracking

Figure 49 - Distance Tracking

Figure 50 - Speed Tracking

After this sequence of movements, this unit moved forward around 72 millimeters over the span
of 1.682 seconds. There is no need to perform a backward test as the unit is entirely symmetric over that
axis, and the ability to move forward is the same as the ability to move backward.

36

6.2 Two Units Test

6.2.1 Movement Calculations
Overall, in two-unit movements, I will use a standing approach. Therefore, in order to maintain

its balance, I need to calculate the locations and positions of both units. To do this, I can make use of
trigonometry and coordinates to represent the entire robot in 3D space.

Figure 51 - Distance Calculations

In this calculation, each grid is 6 centimeters, a circle means a rotatable point, and a vertical line
means connection between two distinct units. It uses trigonometry to calculate how far each step will
make under ideal conditions with the current angles. Overall, each step can step forward about 5.6
centimeters every step.

37

6.2.2 Experimentation
After experimenting with a single unit’s capabilities, we have to experiment with its capabilities

when combined with other units. However, due to the special design of the joints, two units do not have
as much better movement than a single unit.

 Figure 52 - units at Time 0s Figure 53 - units at Time 1.116s Figure 54 - Units at Time 2.398s

For two units, I’ve decided
to make it walk straight up.
This position is attainable
simply through rotating the
top two joints from
completely flat to these 90
degrees position. Therefore,
this is its resting state at time
0.

The first step of moving
forward is to rotate the
back joint such that the
whole robot can shift its
center of gravity towards
the back. This all
happens while the front
joint starts to rotate.

Now the whole robot have
the entire center of mass at
the back foot. Therefore,
the front leg can start to
extend forward to take a
step.

38

Figure 55 - Units at Time 3.863s Figure 56 - Units at Time 4.513s Figure 57 - Units at Time 7.828

Overall, the steps are consistent at moving forward and are surprisingly stable, considering the fact
that no extra balancing is done. However, one minor deficiency of this method of moving forward is that
it potentially makes the robot end at an angle. Just in this example, while the robot is moving forward, it
is also slightly rotating. Because of the lack of degrees of freedom and the need to keep the balance, it is
difficult to adjust for the rotation.

After about a second, the
front leg will step down
and completely touch the
ground. Meanwhile, the
back leg pushes the front
leg forward so it can land
properly.

Afterwards the back leg pushes
the entire robot forward to add
to the distance that it travels in
one step. Besides, this step is
also necessary because we have
to move the back leg forward
(to an overall resting state).

Finally, the back leg gets
dragged forward to back to a
resting state. All of this
process happens within 8
seconds and moves forward
around 9 to 10 centimeters on
average.

39

6.3 Four Units Tests
As more units are attached together, more functionalities can be achieved. Now, it can swiftly

rotate/turn on the spot, move forward in a straight line, and move forward on an angle.

6.3.1 Four Units Turn Tests

 Figure 58 - Units at Time 0s Figure 59 - Units at Time 0.677 Figure 60 - Units at Time 1.428s

Figure 61 - Units at Time 1.845s Figure 62 - Units at Time 2.827s Figure 63 - Units at Time 3.877s

After moving the outmost
joints back its initial
positions, the robot is now
again in resting position.

Then the robot flattens the
center joints to rotate the
robot.

After, the robot will lift
its center up so only the
4 outmost faces for on
the ground.

Then the robot bends all of
the middle joints for the
robot turn on the spot. It is
worth noting that through
changing the direction of
these rotations and the
degrees, we can control
how much the robot the
turns and to which
direction.

The first step towards
turning is to turn all of
the outmost joints to
facing the ground.

This is the initial resting
state for the robot.

40

Overall, this on-the-spot turn is pretty good. It can turn about 45 degrees in around 4 seconds.
This turning angle is also controllable by controlling how much the servo turns before lifting the center of
the robot up. This approach is pretty effective for robots like this.

6.3.2 Four Units Forward Tests

Figure 64 - Units at Time 0s Figure 65 - Units at Time 0.715s Figure 66 - Units at Time 1.267s

Figure 67 - Units at Time 2.168s Figure 68 - Units at Time 2.749s

This is the initial resting
position of the 4-unit
robot.

Like rotating on the spot,
the robot first turn all
outmost joint to face the
floor.

Unlike rotating on the spot,
two arms on the side rotates
90 degrees to the direction
that it is going to.

The robot than lift its center off of the
floor and rotate both arms back
straight, which moves the robot
forward.

It then quickly rests all of the joints
back to their resting positions.

41

Overall, the robot is capable of moving forward 14 centimeters within 3 seconds, which is quite
effective. The amount of forward movement is also controllable by changing the degree to which the side
arms are rotated forward.

6.4 Servo Strength Test
6.4.1 Overview

In this section, I measured the maximum weight that each servo within a single unit can lift (rotate).
For convenience of the project. I will only be testing the capabilities of one joint, as mathematical
equivalence could be drawn with a few formulas. Please do note that this testing data may vary based on
batteries and how charged it is.

6.4.2 Servo Strength Results

Figure 69 - Force Testing 1.4KG, Unraised

Figure 70 - Force Testing 1.4KG, Raised

0.7KG Weight Passed
1.2KG Weight Passed
1.4KG Weight Passed
1.9KG Weight Failed

42

Figure 71 - Force Testing Result Table

Finally, it’s able to raise weight about 1.4 kilograms. From this result, we can tell that despite this
joint doesn’t have too much issue rotating with heavy items on its side. It’s also not strong enough for this
singular servo to rotate an entire 4-unit robot completely by itself, if given support.

6.4.3 Analysis
Overall, this joint can rotate despite weight and when multiple of them are working at once, can move

robot pretty quickly. Besides, when the center mass of the rest of the component is further away from the
servo, we know from physics that this servo will be able to rotate less weight (especially against gravity).
However, because I’m still using a relatively weak servo, it cannot drive many units simply by itself.
Therefore, this will limit some movements.

43

7 Conclusion
In conclusion, these sets of experiments demonstrated the abilities of this robot, whether it is usage in

a single unit, two units, or four units. It is capable of moving in different directions and with different
movement styles. Besides, as more time is invested into this project, more movement patterns and
possibly more effective ones will be discovered, which fully demonstrates the potential of this project.
Also, its expandability makes it perfect for dealing with unexpected events or conquering different
terrains compared to those with wheels. In the future of this project, the controlling software between
units can definitely be improved. Currently, as mentioned, they are only capable of moving in predefined
groups. However, with improvements in software control, they are capable of much more, such as
movement with different configurations and faster communication between units. Besides, the mechanical
design can also be improved. It would most definitely benefit from properly machined components, as
well as a stronger motor, a revamped joint design, and much more.

7.1 Future Outlook
In the future, this project can be expanded to include many aspects and be used in many different

fields. For example, this type of robot can be made with smaller components to go through crevices in
post-disaster scenarios. These robots can also solidify each joint and have stronger motors for it to be used
as robotic arms in factories that require less precision. They can also be made with a variety of probes and
sensors to map the world in the wildest of forests.

Besides modifications and add-ons to the physical structure, improvements can also be made to the
software side. The current project utilizes a single center control board that, in fact, does not control a unit
itself. If possible, we can make a mainboard on one of the units as the center control board, which
mitigates the problem of needing an extra board. Besides, we can also allow units to make a “cluster,” and
within each “cluster,” a board will be selected as the main control board. This approach alleviates the
processing power required for the center control board but requires faster communication between these
boards to sync their actions.

In the broader theme of application for this project, it’s clear that it has potential. For example, this
system of modularity can be applied to robots that might require constant repairs from potential damage,
as well as robots that requires wide adaptability from changing components. The base of modular robotics
can also be joined with other innovations, such as soft robotics, to reach even wider possibilities.

44

8 References

[1] G. Song, Y. Zhou, Z. Wei and A. Song, A smart node architecture for adding mobility to wireless
sensor networks, Sens Actuators A Phys, Vol. 147, No. 1, pp. 216-221, 2008.

[2] Xu, W., Han, L., Wang, X., Yuan, H., & Liang, B. (2020). Intelligent modularized reconfigurable
mechanisms for robots: development and experiment. Research Square (Research Square).
https://doi.org/10.21203/rs.3.rs-19729/v2

[3] Yang, C., Xu, B., Xia, J., Chang, H., Chen, X., & Ma, R. (2023). Mechanical behaviors of inter-
module connections and assembled joints in modular steel buildings: A comprehensive review. Buildings,
13(7), 1727. https://doi.org/10.3390/buildings13071727

[4] Dorigo, M. (2005). SWARM-BOT: an experiment in swarm robotics. Proceedings 2005 IEEE Swarm
Intelligence Symposium, 2005. SIS 2005. https://doi.org/10.1109/sis.2005.1501622

[5] Dorigo, M. (2014). The Swarm-bots and Swarmanoid experiments in swarm robotics. Dorigo - 2014
IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) - 2014.
https://doi.org/10.1109/icarsc.2014.6849753

[6] Liu, C., Lin, Q., Kim, H., & Yim, M. (2022). SMORES-EP, a modular robot with parallel self-
assembly. Autonomous Robots, 47(2), 211–228. https://doi.org/10.1007/s10514-022-10078-1

[7] Kuo, V., & Fitch, R. (2014). Scalable multi-radio communication in modular robots. Robotics and
Autonomous Systems, 62(7), 1034–1046. https://doi.org/10.1016/j.robot.2013.08.007

[8] Luo, H., & Lam, T. L. (2023). Auto-Optimizing connection planning method for Chain-Type modular
Self-Reconfiguration robots. IEEE Transactions on Robotics, 39(2), 1353–1372.
https://doi.org/10.1109/tro.2022.3218992

