
Navigating the Tumor Microenvironment:  Identifying Novel Biomarkers in Non-

Small Cell Lung Cancer Using Single-Cell Transcriptomics 

Abstract: The high degree of cellular heterogeneity in Non-Small Cell Lung Cancer (NSCLC) 

tumor formation calls for expansive exploration into tumor microenviroments (TME), indicating 

that TME research is underlooked in the status quo, consequently making the identification of 

noval genetic biomarkers a flagship for future cancer drug innovations. This study aimed to 

discover novel NSCLC by i) conducting standard procedure single cell RNA analysis towards 

both epithelial cell subtypes and immune cell subtypes, ii) utilizing clinical data and 

implementing statistical models to recognize potential genetic risk factor genes, iii) associating 

stastically significant NSCLC risk factor genes to potential cell subtypes, and iv) identifying 

novel biomarkers with protein binding pockets to allow for future drug design innovations. Using 

single cell sequencing statistics of the 44 tumor samples obtained from 5 NSCLC patients, 

60,760 cells were processed, clustered, and annotated. From the 26 cell-type and 8 Epithelial 

cell-subtype clusters, the basal and brush cell subtype indicated the highest proportion and 

number of copy number variation. Further clinical prognostic analysis identified 14 statistically 

significant risk factor genes. In addition, correlation analysis between previously identified 

genetic biomarkers (p<0.05) and 30610 preprocessed T cells demonstrates strong correlation 

between RNASET2 and T-regulatory cell-subtype (r=0.698) as well as CD4+ cell-subtype 

(r=0.663). Finally, the protein structure visualization of all identified genetic biomarkers (p 

<0.05) revealed two genes (RNASET2 and LAMB1) with protein binding sites, encouraging drug 

designs with ligand sites that is complementary with the structure of these protein binding 

pockets. This project hypothesizes that there exists previously undiscovered or untapped 

biomarkers within the NSCLC tumor micro-environment, and thus, will utilize bioinformatics 



techniques to discover novel biomarkers, in attempt to provide new directions towards drug 

design and innovation. Ultimately, it contributes to the medical field by identifying thirteen 

immunological cancer risk factors, two biomarkers with significant drug development benefits, 

and one stromal biomarker.  
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1. Introduction 

Despite recent developments, lung cancer, with non-small cell lung cancer (NSCLC) being 

its most regular subtype (80%-85%), remains a leading cause of death– not only does lung cancer 

hold the highest mortality rate within the 36 cancer types, but it is also the most commonly 

diagnosed cancer type. Previous research attributed its high mortality rate (2%-20% of NSCLC 

patients survive five years from diagnosis) due to the huge amounts of late diagnosis (Rodak et al., 

2021). In the past, Scientists have already identified the leading oncogene mutations that are 

heavily correlated to lung cancer, including EGFR, TP53, KRAS, MET. ALK, ROS1, and BRAF. It 

is worthy to note that in order for proto-oncogene to be activated into oncogenes, there must be an 

occurrence of gain-of-function mutations that most commonly appears as point mutations in 

proteins, an overexpression of proteins caused by localized reduplication, and false gene 

expression caused by chromosomal reduplication. Therefore, this research project is designed in a 

way to identify important genes or carcinogenic factors that are beneficial to the treatment of 

NSCLC through single-cell sequencing technology. Ultimately, this study hopes to discover cancer 

risk biomarkers that may potentially reduce the number of late diagnosis, which is a staggering 

number considering that in 2020 alone, approximately 2,206,771 individuals were diagnosed with 

lung cancer drawn from a sample of 185 countries (Rodak et al., 2021). 



To achieve the aim, this study analyzed datasets drawn from single cell RNA sequencing. 

In this paper, the scRNA-seq approach was selected because it could not only identify health cells 

from tumor cells at early developmental stages, but also, with the aid of other recent technologies 

like CyTOF (cytometry by time-of-flight), scRNA-seq could confirm the association between 

TNFRSF9 and higher levels of tumor necrosis (Rodak et al., 2021). Before the single cell RNA 

sequencing approach was popularized, researchers could only examine cell features with large 

quantities of raw material, which makes the costs of conducting studies, especially manual labors,  

with a cell lens very difficult and costly. In essence, the single-cell RNA sequencing approach 

analyzes cells individually, which helps researchers understand the role specific cells play in a 

complex biological system through providing in-depth features on a singular cell. Through 

analyzing a population of cells with the same functions, the single-cell RNA sequencing approach 

offers insights into population heterogeneity within cells within the same tissue. The single cell 

RNA sequencing technique, established by Tang et al. in 2009, allowed more in-depth analysis 

and decreased costs significantly in cell-based research. Currently, researchers can analyze 

transcriptome at “single‐cell level for over millions of cells” in a single study (Jovic et al., 2022). 

Furthermore, this study focuses on cellular compositions of the tumor microenvironment 

(TME). Recent studies found that the dynamic between cancer cells and TME may be an “active 

promoter of cancer progression” because the TME may “support cancer cell survival, local 

invasion, and metastatic dissemination” depending on its components (Melo et al., 2021). Immune 

cells and stromal cells are the major cellular components of the TME. Specifically, immune cells 

are grouped into adaptive immune cells, which use immunological memory to strengthen immune 

responses, and innate immune cells, which produce defense responses immediately. Both groups 

of immune cells can either suppress or promote tumor genesis. Stromal cells, including vascular 



endothelial cells, fibroblasts, adipocytes, and stellate cells, vary hugely between different TME. 

They contribute to tumorigenesis by secreting chemicals that lead to “angiogenesis, proliferation, 

invasion, and metastasis” (Melo et al., 2021). This project aims to identify the composition of 

NSCLC cells, further understanding of the relationship between epithelial cell subtypes and 

NSCLC, employ clinical prediction models to identify potential carcinogens, and research the 

connection between immune T-cells and tumor formation. Consequently, this study hypothesizes 

of the existence of undiscovered or untapped biomarkers within the NSCLC tumor micro-

environment.  

 

 

 

 

 

2. Method  

2.1 Single Cell RNA sequencing  

To generate the dataset, researchers previously employed the technique of single cell RNA 

sequencing in order to use cell composition as a lens to predict lung cancer. This involves three 

major steps including first, isolating tissues into singular cells, a step which allows researchers to 

analyze cells independently; the second step involves capturing the singular cells and extracting 

the RNA through adding poly-A and poly dt; the last step sequences the RNA. Specifically, this 

study utilized the technology 10xGenomics, a microfluidics-based method, to allow for single-cell 

RNA sequencing.  

 



2.2 Dataset Sourcing  

 This study utilized an open-sourced data in the GEO database, explicitly, it attained single 

cell sequencing information from 44 tumor samples from 5 NSCLC patients. The statistical 

distribution of the sample is shown in the table below:



 

Table 1 Sample Information Table 

  Tumor edge 

tissues 

Tumor middle 

tissues 

Tumor center 

tissues 

Healthy tissues 

(control) 

Patient 1 3 samples 3 samples 2 samples absent 

Patient 2 3 samples 3 samples 3 samples 3 samples 

Patient 3 2 samples 2 samples 2 samples 2 samples 

Patient 4 2 samples 2 samples 2 samples 2 samples 

Patient 5 2 samples 2 samples 2 samples 2 samples 

 

2.3 Raw Data Preprocessing 

After downloading the dataset, cellranger 7.1.0 processed the dataset: comparing reference 

genomes, data filtering, data correction, and other procedures to conduct process analysis on the 

human reference genome, GRch38. The analysis results in three files, namely the barcodes.tsv, 

features.tsv, and matrix.mtx files for subsequent data analysis. 

 

2.4 Quality Control and Data Integration 

This study utilized Seurat packet 4.3.0 to perform analysis. In order to identify cell subjects 

to include in this study, cells with less than 300 genes and cells where the mitochondrial gene 

represents over 10% of the entire genetic expression was filtered out. FindIntegrationAnchors was 

then used to remove the batches and integrate the dataset, which serves the consequent normalizing 

and standardizing processes.  



 

2.5 Cluster Analysis and Annotation 

After the filtering, the remaining 60,760 cells were clustered and annotated. Next, this study 

employed dimensionality reduction techniques like principal component analysis (PCA) with a 

coefficient for the total of PCs to compute the data (npcs) of 80. Finally, the UMAP was mapped 

with the default parameters and carried out cluster analysis on the dataset with a 0.5 resolution for 

the Louvain algorithm. Ultimately, the UMAP allowed me to annotate the graph form marker-

genes cited in multiple PubMed papers and the CellMarker dataset. 

 

2.5.1 NSCLC Cell Composition 

NSCLC cells are composed of epithelial cells, endothelial cells, NK cells, cancer cells, 

myeloid cells, T cells, B cells, fibroblasts cells, and neuroendocrine cells, for which the marker 

genes SFN, COL4A1, NKG7, EPCAM, CD163, CXCL13, CD79A, COL1A1, C1R, CENPF were 

selected respectively. 

 

2.5.2 T-cell Specific Cluster Analysis and Annotation 

30610 T cells from the dataset processed through Seurat were first selected. Following which, 

dimensionality reduction techniques like PCA with a coefficient for the total of PCs were used to 

compute the data (npcs) of 50. Finally, the UMAP was mapped with the default parameters and 

carried out cluster analysis on the dataset with a 0.4 resolution for the Louvain algorithm. The 

UMAP allowed me to annotate the graph with marker-genes cited from multiple references, 

primarily, the Human Protein Atlas. 

 



2.6 Using Copy Number Inference to Identify Tumor Cells 

The packet infercnv (copy number inference) was downloaded,  applied with the cut-off 

parameter as 0.1,  and referenced with the copy number variation results for epithelial cell subtypes 

to that of T-cells. 

 

2.7 GO, KEGG, GSEA functional enrichment analysis 

𝑃𝑎𝑑𝑗𝑢𝑠𝑡 and 𝑙𝑜𝑔2𝐹𝐶 scores of the marker genes of both cancer cells and epithelial cells were 

calculated by selecting genes where 𝑃𝑎𝑑𝑗𝑢𝑠𝑡 <  0.05 and 𝑙𝑜𝑔2𝐹𝐶 >  1.5 to conduct functional 

enrichment analysis. Specifically, clusterProfiler 4.8.3 was used to perform enrichment analysis, 

namely Gene Ontology (GO) and Kyto Encyclopedia of Gene and Genomes (KEGG) on their 

differential expression gene. Fgsea 1.26.0 was then downloaded to perform Gene Set Enrichment 

Analysis (GSEA). This R-package allows for quick and accurate calculations of low GSEA p-

values. The results of the top 10 genes filtered through GO and KEGG and the top 4 genes found 

through GSEA with ggplot2 (3.4.3 version) were then visualized.  

 

2.8 Hub Genes – PPI 

This data was imported into STRING to visualize protein-protein interaction network (PPI). 

Cytoscape_v3.10.1, which allowed for the use of cytoHubba(v0.1) plug-in to filter hub genes, was 

then downloaded. Although there are 11 topical analysis methods in CytoHubba (v0.1) including 

Degree, Edge Percolated Component, Maximum Neighborhood Component, Density of Maximum 

Neighborhood Component, and Maximal Clique Centrality, this paper adopted the MCC (Maximal 

Clique Centrality) algorithm.  

 



2.9 Clinical Prognostic Analysis 

Before graphing the Kaplan Meier (K-M) Survival curve, the data on lung adenocarcinoma 

(LUAD) that was sourced from the TCGA dataset was preprocessed. Then, the packet, survival, 

in Rstudio was used to visualize the K-M Survival curve. Further Cox Proportional analysis and 

the LASSO regression model were implemented to filter out significant risk variables. This 

hypothesis was then confirmed through graphing a reciver operating character curve (ROC) and 

calculating the area under its curve (AUC). Lastly, correlation analysis was used to identify the 

possible cell subtypes that the genetic biomarkers may resemble.   

 

2.9.1 Graphing K-M Survival Curve 

Matrix datasets and clinical sample information for both LUAD and LUSD TPM, the two 

subtypes of NSCLC, from TGCA were downloaded to perform survival analysis. Using the 

survival packet 3.5.7 and ggplot2 (3.4.3 version), this study graphed the change of expression 

levels of hub genes through time under two survival states (alive and dead). 

 

2.9.2 Cox Proportional Hazard model 

A open-sourced clinical dataset from the TCGA dataset was preprocessed to conduct 

regression analysis. Specifically, the survival packet 3.5.7 on R was downloaded to make 

calculations on the model, identifying p value < 0.05 and HR ≠ 1 as factors to a significant variable. 

Further, the median score of the risk score was used to identify high and low risk factors. Then, 

this study also graphed the results that it generated from the random forest algorithm and risk 

factors analysis. It is also important to understand that the primary construction of the regression 

analysis relies on this equation: 



 

ℎ(𝑡)  =  ℎ0(𝑡) × 𝑒𝑥𝑝(𝑏1𝑥1 +  𝑏2𝑥2+. . . +𝑏𝑝𝑥𝑝) 

 

Where: 

𝑡 represents the survival time; 

ℎ(𝑡) is the hazard function determined by a set of p covariates (𝑥1, 𝑥2, . . . , 𝑥𝑝);  

The coefficients (𝑏1, 𝑏2, . . . , 𝑏3) measure the impact (i.e, the effect size) of covariates; 

The term is called the baseline hazard, which is the value of hazard when 𝑥𝑖 is equal to zero (Abd 

ElHafeez et al., 2021).  

 

2.9.3 LASSO Regression Model – filtering significant risk variables 

LASSO regression analysis was performed based on overfitting prevention techniques, using 

the glmnet packet 4.18 to construct a regression model. Lambda.min was selected as the coefficient 

for filtering significant risk variables.  

 

2.9.4 Graphing ROC Curve  

SurvivalROC 1.0.3.1 was used to calculate the ROC for the one-year, three-years, and 5-years 

survival rate, based on the K-M Survival Curve that was previously predicted. This study further 

used the percentage of true positive and false negative events to predict the AUC, assuming that 

when AUC > 0.6, the result is significant.  

 

2.10 Pseudotime Analysis 

Monocle 2.28.0 was then downloaded to use the cluster biomarker differential gene approach 



to retrieve 7974 genes. Then, the data-set was filtered out by p-value, which narrowed it down to 

2000 genes; constructed subjects for CellDataSet; estimated the size factor and dispersion; and 

defined the trace genes to construct the tracing model. From these steps, a heatmap, containing the 

top 100 genes, a dispersion map with all 2000 genes, and three pseudo time graphs, was created 

The pseudotime graphs are displayed by T-cell subtype, color, and state respectively.  

 

2.11 Cell and Gene Correlation Analysis 

Correlation analysis was conducted between the 7 predicted carcinogens and the 6 marker 

genes of the t cell subtypes that were annotated. This procedure was performed through the pearson 

approach, using the cor function to calculate r (the correlation coefficient). Lastly, the dataset was 

visualized with the ggplot2 package in Rstudio.  

 

2.12 Protein Binding Pocket Detection 

This study utilized Pymol, an open-source proprietary molecular visualization system, to 

detect protein binding pockets in the thirten statistically significant risk factors filtered out by the 

Cox Proportional Analysis and LASSO regression model and PPI.  

 

 

 

 

 

 

 



 

3. Results 

3.1 Identifying Cell types 

After performing dimensionality reduction techniques, the first round of cluster analysis was 

confucted. The UMAP algorithm classified the dataset into 26 clusters. This study annotated the 

independent clusters by first grouping them into possible pairs (clusters that shares the same cell-

type) based on gene-expression details derived from the wilcoxon heat graph and dot graph were 

mapped in R (figure 1c); Then identifying marker genes by references and CellMarker database. 

This resulted in nine total cell types which are epithelial cells, endothelial cells, NK cells, cancer 

cells, myeloid cells, T cells, B cells, fibroblasts cells, and neuroendocrine cells. UMAPs for each 

specific marker gene (SFN, COL4A1, NKG7, EPCAM, CD163, CXCL13, CD79A, COL1A1 C1R, 

CENPF) were then created to confirm that each marker gene is distinctly associated with the 

specific cell types selected. One anomaly was found: the gene expression of NKG7(the marker 

gene for NK cells) is equally representative for T cells; however, their similarities are 

understandable as bioinformatic analyses of transcriptional profiles in 2011 showed that NK cells 

and T cells are highly similar.  The violin graph confirmed this pattern. 

 

https://academic.oup.com/intimm/article/23/7/427/675088
https://academic.oup.com/intimm/article/23/7/427/675088
https://academic.oup.com/intimm/article/23/7/427/675088


(a)               (b) 

 

(c)             (d)  

 

Figure 1 Visualization of cell type and marker genes 

(a) UMAP of cell type unannotated 

(b) UMAP of cell type annotated 

(c) Wilcoxon Heat Map 

(d) Violin Graph for cell type marker genes 

(e) UMAP of cell type marker genes 

 

(e) 



3.2 Identifying Epithelial cell sub-types 

From literature reviews and additional references, which indicates that most carcinogenic 

cells are derived from epithelial cells, the paper narrowed down to perform the same process of 

cluster analysis for the subtypes of epithelial and cancer cells. The results of copy number variation 

analysis further supports this claim. Specifically, epithelial cells were grouped into the 

subcategories of cilia cells, secretory club cells, cancer cells, AT1 cells, AT2 cells, basal cells, and 

brush cells. Again, these cell types were matched with marker genes that was found in CellMarker 

(and references to confirm their correlation by mapping UMAPs and violin graphs), namely, 

TMEM190, HLA-DRB1, KRT19, TM4SF1, SFTPA2, TUBB, and KAZN.  

(a)                          (b)  

 

Figure 2 UMAPs of epithelial cell sub-types 

(a) Epithelial cell sub-type UMAP prior annotating 

(b) Epithelial cell sub-type UMAP post annotating 

 

3.3 Inference Copy Number Variation 

The previous decision is supported by the results of the analysis on copy number variation. 

The decision of analyzing the subtypes of epithelial cells was further validated by the infercnv. 

Figure 3a depicted that unlike the control, where modified expressions remained close to 1, which 



meant that there are limited copy number variations—all of the subtypes of epithelial cells showed 

both areas with concentrated higher and lower modified expressions in its genomic region in the 

observation cells relative to the reference cells. Large levels of genetic mutation, which can be 

inferred from dramatic concentrations of modified expressions, indicates changes to cell division, 

which leads to canceration. Figure 3b showed, on the other hand, the total number of copy number 

variation in each subtype of epithelial cells. It demonstrated that basal cells have the largest range 

of copy number variation. The significance of this dataset was later explored through analyzing 

the proportion of tumor cells to that of paranormal cells for each epithelial cell subtype. This 

dataset reveals that the proportion of tumor cells is highest in brush cells and the lowest cilia cells. 

(a)                     (b)  

 

Figure 3. Visualization of Copy Number Variations 

(a)  InferCNV 

(b)  Epithelial cell sub-type copy number result boxplot 



3.4 Identifying preferred tumor subtype 

Two bar plots were createdto reflect the distribution of sample origins, namely, LUAD, lung 

squamous cell carcinoma (LUSC) and NSCLC. Figure 4a graphs the distribution by cell numbers, 

showing the number of tumor cells in each cell-type for each subtype of lung cancer respectively; 

Figure 4b graphs the distribution by percentage, showing the percentage of tumor cells that can be 

classified under the three subtypes for each cell type. Ultimately, lung adenocarcinoma and lung 

squamous cell carcinoma are both subtypes of NSCLC, therefore, the percentage of sample 

originated from LUAD and LUSC need to be compared; and the graph shows that the majority of 

the participants were LUAD patients in the sample dataset that this research sourced from.  

(a)                                      (b)  

 

Figure 4. Visualization composition of NSCLC subtype 

(a) Distribution of NSCLC Subtype by Cell Number 

(b) Distribution of NSCLC Subtype by proportion 



3.5 GO and KEGG Enrichment Analysis 

The first enrichment analysis of marker genes was performed with Gene Ontology (GO), as 

it supports organisms with usable OrgDb objects. This approach enables annotating genetic 

datasets through three categories: molecular function, biological processes, and cell components. 

The results of the GO graph recognized binding activities to be the most common biological 

process for the marker gene set; Ribosome and cell adhesion materials are the most common 

components; The molecular functions varied but most were associated with transportation and 

movements.  

Similarly, another enrichment analysis was done using KEGG, and the results came from 

differential expression analysis. The KEGG method uses a path lens, which allows me to view the 

results more dynamically. Note that the size of the dots represents the gene count enriched in the 

pathway while the bluer the color, the more significant is the pathway enrichment. Here, the 

analysis identified ribosome and COVID-19 to be the most significantly enriched pathways. 

(a)          (b)  

 

Figure 5. Enrichment Analysis Results 

(a) GO results 

(b) KEGG results 



3.6 Expression Value Difference Analysis and Correlation Analysis 

The GSEA method was chosen to conduct expression value difference and correlation 

analysis for the dataset, msigdb, in the Fgsea packet. This provides the richness score (ES) and the 

P-value of the genelist, allowing me to standardize the dataset and find the normalized richness 

score (NES) and the adjusted P-value (p-adjust). Two graphs were mapped out accordingly and 

four pathways with the highest NES were identified. Furthermore, one cancer-related pathway, 

namely, chemical carcinogenesis, was found, with an NES of 1.58 and p-value <0.05. 

Table 2 GSEA result table 

ID Description setSize 

enrichmentS

core 

NES pvalue p.adjust 

hsa05310 Asthma 12 0.79678681 2.11757417 0.00110865 0.02912719 

hsa04672 

Intestinal immune 

network 

for IgA production 

19 0.71177536 2.07966955 0.00105597 0.02912719 

hsa05322 
Systemic lupus 

erythematosus 
29 0.69370757 2.19392531 0.00102459 0.02912719 

hsa05320 
Autoimmune thyroid 

disease 
19 0.64722322 1.89106074 0.00211193 0.0406899 

hsa05330 Allograft rejection 19 0.64722322 1.89106074 0.00211193 0.0406899 

hsa05204 

Chemical 

carcinogenesis - 

DNA adducts 

16 0.55788199 1.58066254 0.03870968 0.41368451 



 

(a)                  (b)  

Figure 6. GSEA results 

(a) GSEA result cancer related ID 

(b) GSEA result top 4 IDs 

 

3.7 Hub genes 

First, a PPI graph was generated by the website STRING. Then, to identify the top six hub 

gene for further analysis, the plug-in Cytohubba in Cystoscope was utilized to filter out the six 

most important hub genes, which are namely, NDUFS7, ATP5PD, NDUFB8, NDUFS3, COX6A1, 

and NDUFB4. Specifically, the MCC algorithm was used to select the hub genes because past 

studies found it to have the best precision in predicting essential proteins in PPI networks of other 

model organisms, including yeast. This step allowed us to use these differentially expressed genes 

to draw the Kaplan Meier survival curves. 

(a)         (b) 

 

Figure 7. PPI & Cytohubba visualization 



(a) Final hub gene selection 

(b) Cytoscape rough results 

 

3.8 Kaplan Meier survival curves 

Before drawing the Kaplan Meier survival curves (KM),  the dataset, retrieved from the 

TCGA database, was preprocessed. TPM expression matrix for the LUAD, a subdivision of 

NSCLC, the TCGA clinical samples from this database, and the differential expressed genes 

matrix that found through the previous process were all utilized. With the aid of the Kaplan Meier 

survival curves, this study identified the significance each hub gene must contribute to individuals’ 

survival rates and time. One gene produced a statistically significant result: In the graph below, 

the blue line represents the overall survival rate over years in those who exhibited high expression 

levels of NDUFB8 while the red line represents that for those who exhibited low gene expression 

levels for the same gene. With a p value of 0.038 (p <0.05), this study hypothesize that NDUFB8 

has a high potential research value in the field of LUAD tumor type NSCLC.  

 

Figure 8. K-M survival curve for NDUFB8 gene 

 



3.9 Simplification techniques 

The single factor cox regression analysis was conducted to screen for important differentially 

expressed genes that act as independent variables in relationship to survival rates for NSCLC 

patients, which limits the scope of later analysis procedures. To the same end, a least absolute 

shrinkage and selection operator regression analysis (LASSO), which simplified the original linear 

regression model and provided a solution to overfitting by limiting the coefficient for independent 

variables, was also conducted. In the end, this process used regularization techniques to narrow 

the number of independent variables from 393 to 93. Figure 9b plots the LASSO model. The graph, 

with binomial deviance and log(lambda) as its dependent and independent variables, shows two 

dotted lines which represent the lambda min and lambda 1SE respectively. Note that they are 

important because the range of values in between the two lines minimizes the binomial deviance. 

Finally, the lambda min was used in this study because it filters out less genes which broadens the 

scope of this study. 

(a)              (b)  

 

Figure 9. Simplification technique Visualization 

(a) LASSO regression analysis coefficient distribution 

(b) LASSO analysis result 

 

 



3.10 Identifying statistically significant change factors 

Statistically significant risk factors were identified through multivariate cox regression 

analysis and the random forest algorithm. The multivariable cox analysis and the random forest 

algorithm both recognized RNASET2, HPSE2, LAMB1, RXFP1, KLK6, and CAV2 as statistically 

significant risk variable genes (p<0.05). Further they showed that while HPSE2 and RXFP1 are 

associated with decreased risk of lung cancer and increased survival times, RNASET2, LAMB1, 

and CAV2 are associated with increased risk of lung cancer and decreased survival times. However, 

the random forest algorithm filtered out ADAM15 as statistically insignificant (p>0.05) while the 

multivariate cox analysis didn’t.  

Figure 10c showed how the risk scores of genes are identified in the random forest algorithm 

graphs; while Figure 10a and 10b visualizes risk with the cox hazard model: On the left side of the 

graphs the risk scores were lower and more patient samples were alive while on the right side of 

the two graphs, the risk scores were higher, and the number of dead patient samples was larger 

than that of alive samples. 

Table 3 Multivariable Cox Analysis Results 

gene coef exp(coef) se(coef) z p 

RNASET2 0.033947 1.03453 0.0109 3.114 0.001843 

HPSE2 -0.2223 0.800678 0.101267 -2.195 0.028152 

LAMB1 0.009352 1.009396 0.003629 2.577 0.009963 

GOLM1 0.000693 1.000694 0.000444 1.562 0.118173 

RXFP1 -0.22614 0.797604 0.114406 -1.977 0.048079 

KLK6 -0.00912 0.990918 0.00392 -2.327 0.019954 

KLK8 0.024677 1.024984 0.014092 1.751 0.079928 

SPATS2 0.016496 1.016633 0.008426 1.958 0.050258 

PLEKHA6 0.007752 1.007782 0.004734 1.637 0.101527 

SRGN 0.000288 1.000288 0.000159 1.811 0.070206 

ADAM15 0.002233 1.002236 0.001123 1.989 0.046695 

CAV2 0.005874 1.005891 0.001564 3.755 0.000173 

CAVIN3 0.014055 1.014154 0.008837 1.59 0.111727 



(a)  

   (c) 

 

(b)  

 

 

Figure 10. Hazard Ratio Visualized 

(a) risk score visualization (based on high/low risk) 

(b) risk score visualization (based on living status) 

(c) Random Forest Algorithm Visualization 

3.11 Model Validation 

The hypothesis on the final risk factors was validated by the combined ROC (receiver 

operating characteristic curve) curve with an AUC (area under curve) around 0.6. In general, an 

AUC of 0.6 - 0.8 is regarded as acceptable, meaning that the risk factors found in this study affects 

the ability to diagnose patients of the disease NSCLC.  

This research further proceeded to analyze the tumor microenvironments in depth, examining 

how the interactions between tumor cells and components of their respective microenvironment 



contributes to the final diagnosis, survival outcomes, and clinical treatments. Since a tumor 

microenvironment is often divided into one dominated by immune cells and one that is majority 

composed of fibroblasts, this study decided to target specific relationships between immune cells 

and tumor diagnosis. Ultimately, immune cells play two significant roles in tumor regulation, 

namely, the prevention of tumor progression or the promotion of tumor progression, depending on 

the phenotypes of the immune cells, which makes them a necessary component to examine in 

depth. Specifically, T-cells were selected due to its long history with NSCLC research and the 

large varieties of T-cell subtypes. 

 

Figure 11. ROC graph 

 

3.12 Identifying T Cell Subtypes 

The open-sourced dataset that have undergone the Seurat analysis process and collected data 

on T-cells was retrieved to be processed with dimensionality reduction techniques to filter out 

unnecessary information and conducted cluster analysis. The UMAP algorithm classified the 

dataset into 8 clusters, which were then annotated after being grouped into larger sections, and 

associated each group with unique genes with high expression levels in the wilcoxon heat map that 



were graphed in R. Lastly, possible T-cell subtypes that each cluster may represent were identified  

after the genes with information from other references including the human protein atlas were 

matched accordingly. Ultimately, 6 T cell subtypes and 6 respective marker genes, which are 

CD8+ T cells, Vd2 gdTCR cells, Tregs cells, cytotoxic T cells, CD4+ T cells, MAIT cells, and the 

genes, CCL4L2, KLRCL, TNFRSF4, HSPA1B, SERPINE2, and RYR2 were identified. To make 

sure that the marker genes that were identified associates to the T cell, relatively uniquely, a violin 

plot and UMAPs designated for each gene were plotted. Note that because the patterns for Treg 

cells and CD4+ T cells are relatively similar because T-reg cells may also be recognized as a 

branch of CD4+ T cells.  

(a)                           (b)  

 

Figure 12. T cell subtype UMAP 

(a) T cell subtype UMAP unannotated 

(b) T cell subtype UMAP annotated 

 

3.13 Pseudotime Analysis 

The cluster differential gene bio-markers were used to obtain 7973 genes, and filtered it to 

2000 genes by order of p-value from the smallest to the largest. Then the order genes were 

employed to find how dispersed the 2000 genes are, shown in Figure 13b. After these preparations, 

pseudotime analysis was condusted. Left 2 Figure 13a orders the pseudotime of each marker gene 



by the shade of the color, with the darker color meaning that a gene has a lesser pseudotime. 

Moreover, since, from right to left, a singular pivot point separates the pseudotime graph into three 

branches, a pseudotime graph by the three states, also seen as the three branches was then mapped 

out. After which, a pseudotime graph by cell type (left 1 and 3 Figure 13a) was drawn out. Tregs 

and CD4+ T cells, Vd2 gdTCR (𝛾𝛿𝑇cells), and CD8+ T cells were found to be concentrated around 

state 1, 2, 3, respectivel. The top 100 genes were also selected by order of p-value, to graph a 

heatmap (Figure 13c), which was grouped into four clusters to visualize the change in mean 

expression as the pseudotime moves on x-axis of the graph is pseudotime. Finally, the information 

obtained from the previous graphs were utilized to map out Figure 13d. Figure 13d (left 1) is a 

jitter plot that visualizes the mean expression levels of each marker gene that were found during 

T-cell subtype identification under each pseudotime state; Figure 13dleft 2 is a violin plot that 

expresses the amount of the six marker genes under the three states respectively; Figure 13d right 

1 shows the trends of each marker gene as the pseudotime progresses. Specifically, the three 

visualizations suggested that CCL4L2, the marker gene for CD4+T cells, HSPA1B, the marker 

gene for cytotoxic T cells, and TNFRSF4, the marker gene for T-regulatory cells have visible 

trends.  

 

 

 

 



(a)                                (b)          (c)  

 
(d)  

Figure 13. Pseudotime Visualization 

(a) Pseudotime graph 

(b) Dispersion map 

(c) Marker gene heat map 

(d) Pseudotime state progression 

3.14 Correlation Analysis 

A significant correlation (r>0.5 and p<0.01) was found between RNASET2 and both treg cells 

and CD4+T cells. This was explainable because treg cells, also known as regulatory T cells, are a 

subtype of CD4+T cells, and accounts for 5~10% of peripheral blood (PB) CD4+T cells.  

 

 



(a)       (b)  

 

Figure 14. Correlation Analysis Visualization 

(a) Correlation Graph between RNASET2 and Treg cells 

(b) Correlation Graph between RNASET2 and CD4+ cells 

 

3.15 Protein Binding Pocket Visualization  

Pymol, an open-sourced molecular visualization application, was utilized to visualize the 

protein structure of statistically significant risk variable genes and identify whether they contain 

protein binding pockets. Since to either suppress or express a gene, an activator or an inhibitor 

protein must bind to the gene’s protein binding pocket, potential drug discovery is linked hand-

in-hand to the shape and location of potential protein binding pockets. From the thirteen risk 

variable genes found through multivariable cox analysis, two genes contained potential protein 

bind pockets: specifically, LAMB1 and RNASET2, both of which are positively with increased 

risks of NSCLC and a decreased survival rate. 

 

 

 



(a)          (b)  

       

Figure 15. Protein Binding Pocket Visualization 

(a) Visuation for RNASET2 

(b) Visuation for LAMB1 

 

4. Discussions 

In the study, the relationship between epithelial cells and lung cancer were confirmed, while 

finding specific epithelial cell subtypes that may induce tumors. While previous research has 

established that a large proportion of lung cancer developed from epithelial cells which line human 

airways, this paper identified that in particular, the basal and brush cell subtype of epithelial cells 

are significant for future research (Orr & Hynds, 2021). This was concluded because from the copy 

number variation inference, brush cells were identified as the epithelial cell sub-type with the 

highest proportion of tumor cells and basal cells to have the highest copy number variation. This 

conclusion was reached because copy number variations are commonly caused by genome 

rearrangements, which leads to errors in the cell division process. The drastic changes in cell 

division eventually promotes tumorigenesis.  

Through conducting multivariate cox analysis and using the random forest algorithm, 

RNASET2 was recognized a statistically significant risk variable gene (p <0.05 HR = 1.035) 



associated with increased risk of lung cancer and decreased survival times. Furthermore, there was 

a significant correlation (r>0.5 and p<0.01) between RNASET2 and CD4+T cells (especially in its 

T regulatory subtype). While previous studies have already detected this enzyme in particularly 

embryonic tissues and immune cells, particularly in the monocyte/macrophage’s lineage, research 

has not been done on the relationship between the human RNASET2 gene and NSCLC. Before this 

study, research on the RNASET2 gene had been focused on its connection to ovarian cancer. 

RNASET2 has been identified as a tumor suppressor gene in preventing ovarian tumorigenesis (Ji 

et al., 2021). This conflicted with the results obtained from this study: RNASET2 associates with 

increased rates of lung cancer. Ultimately, this distinction makes possible interpretations of 

overexpression of RNASET2 in cancer patients a significant and interesting field for further 

research.  

Later, through the PPI map that was generated on STRING and the Kaplan Meier survival 

curves, a unique hub gene that has high potential research value for further studies in NSCLC 

research identfied. Previous studies targeting the relationship between NSCLC and oxidative 

phosphorylation (OXPHOS), discussed notable changes in the expression of NDUFB8 in LUAD 

tumor cells compared to healthy cells. NDUFB8 (Ubiquinone Oxidoreductase Subunit B8) which 

is involved in the assembly of the mitochondrial respiratory chain complex I, is also a biomarker 

of Alzheimer’s disease and Parkinson’s disease (Stelzer G et al., 2023). The gene, along with 

NDUFV1, NDUFV2, NDUFS1, NDUFS2, NDUFS3, NDUFS7, NDUFS8, forms the core subunits 

of complex I, and catalyzes the oxidation of NADH and electron transfer, which is consequential 

for the OXPHOS machinery. Previous studies have established that other components of the 

OXPHOS machinery are highly predictive in detecting early-stage NSCLC, in particular, “the 

expression of OXPHOS genes is negatively correlated with the prognosis of lung adenocarcinoma” 



(Kalainayakan et al., 2018). However, while it is conclusive that high levels of OXPHOS genes 

helps detect early-stage cancer because the process energizes cancer cells, there is very limited 

research on NDUFS8 on the area of NSCLC making further studies necessary. 

Finally, this paper recommend researchers to focus future clinical drug discovery for 

NSCLC on inhibiting the expression of LAMB1 and RNASET2. Although previous researchers 

have suggested that there was a down-regulation of RNASET2 in cancerous gastric tissues in 

comparison to adjacent non-cancerous tissues, the same article describes decreasing levels of 

RNASET2 in cancerous stomach tissues as a “consequence of GAC (Gastric Adenocarcinoma 

Cancer), instead of the driver.” Furthermore, a CRISPR/Cas9 analysis found that “RNASET2 

knock out had no significant effect on angiogenesis and tumor cell growth but increased cell 

differentiation,” suggesting that the correlation between low levels of RNASET2 and tumor 

growth is not causational (Hosseini et al., 2022). However, it is worthy to note the potential 

harms of RNASET2 deficiency. Specifically, RNASET2 deficiency may impair “the recycling of 

ribosomal RNA,” which is an essential element of protein synthesis (Cox, 2023). Similarly, 

RNaseL’s inactivation of RNASET2 “could lead to a failure to degrade either extracellular and/or 

intracellular ssRNAs, which triggers the innate immune response with downstream consequences 

on development.” Ultimately, this study also confirms this hypothesis, finding a significant 

correlation between RNASET2 and CD4+T cells, especially T-regulatory cells, cell subtypes that 

compose the immune system. Additionally, research on Ovarian Cancer “suggested a role for 

RNASET2 as a class II Tumor Suppressor Genes, whose function is abolished in cancer tissues 

mainly by downregulation of its expression rather than by mutational events” (Bruno et al., 

2022). While this paper targets on providing plausible solutions to NSCLC, the effects of 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/angiogenesis
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cellular-differentiation
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cellular-differentiation


RNASET2 on other cancer subtypes should also be taken into consideration under the larger 

umbrella of the effects of minimizing RNASET2 expression.  

On the otherhand, although drug innovation that focuses on inhibiting LAMB1 is limited, 

LAMB1 has been historically associated with the initiation and progression of pneumoconiosis. 

Studies found that reduced activity of LAMB1 transcription correlates to reduced levels of Coal 

worker's pneumoconiosis (CWP). Similarly, an analysis of the effects of LAMB1 on gastric 

cancer prognosis states that the gene “elevated cell proliferation, invasion, and migration” by 

“promotes cell growth and motility via the ERK/c-Jun axis.”   

Moreover, future research can focus on creating new, distinct algorithms to calculate the 

ligand compatibility between the protein binding pockets and potential medical treatments. To 

specify, studies should focus on both the positive and negative effects that drug innovations and 

protein binding pockets may influence each other. Note that the relationship between drugs and 

protein binding pockets models the induced-fit theory, stating that both the protein structure and 

ligand site modify its shape to maximize binding efficiency and success. Another means of 

future research is to produce new algorithms to predict the probability of cryptic protein pockets, 

similar to the PocketMiner graph neural network, and further expand the predicting algorithm 

from the probability of potential cryptic pockets to their potential shapes (Meller et al., 2023) 

There are also limitations to this study that are worth mentioning in this paper. While this 

study aims to perform a thorough analysis of NSCLC tumor structure and potential carcinogens, 

most of this study focuses on LUAD, a subtype of NSCLC, rather than LUSC. This is because the 

open-sourced dataset that this study adopted found a higher proportion of tumor cells under the 

LUAD subtype. This means that the results of this study are more generalized towards LUAD 

patients.  



5. Reference 

Bruno, A., Noonan, D. M., Valli, R., Porta, G., Taramelli, R., Mortara, L., & Acquati, F. (2022). 

Human rnaset2: A highly pleiotropic and evolutionary conserved tumor suppressor gene 

involved in the control of ovarian cancer pathogenesis. International Journal of 

Molecular Sciences, 23(16), 9074. https://doi.org/10.3390/ijms23169074 

Chen, G., Ning, B., & Shi, T. (2019). Single-Cell rna-seq technologies and related computational 

data analysis. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00317 

Cox, T. M. (2023). Lysosomal diseases. Encyclopedia of Cell Biology, 977-1028. 

https://doi.org/10.1016/b978-0-12-821618-7.00282-0 

The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses (PMID: 

27322403 ; Citations: 2,595) Stelzer G, Rosen R, Plaschkes I, Zimmerman S, Twik M, 

Fishilevich S, Iny Stein T, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary, D, 

Warshawsky D, Guan - Golan Y, Kohn A, Rappaport N, Safran M, and Lancet D Current 

Protocols in Bioinformatics(2016), 54:1.30.1 - 1.30.33.doi: 10.1002 / cpbi.5 [PDF] 

Hosseini, S. A., Salehifard Jouneghani, A., Ghatrehsamani, M., Yaghoobi, H., Elahian, F., & 

Mirzaei, S. A. (2022). CRISPR/Cas9 as precision and high-throughput genetic 

engineering tools in gastrointestinal cancer research and therapy. International Journal of 

Biological Macromolecules, 223, 732-754. 

https://doi.org/10.1016/j.ijbiomac.2022.11.018 

Ji, M., Zhao, Z., Li, Y., Xu, P., Shi, J., Li, Z., Wang, K., Huang, X., & Liu, B. (2021). FBXO6-

mediated rnaset2 ubiquitination and degradation governs the development of ovarian 

cancer. Cell Death & Disease, 12(4). https://doi.org/10.1038/s41419-021-03580-4 



Jovic, D., Liang, X., Zeng, H., Lin, L., Xu, F., & Luo, Y. (2022). Single‐cell RNA sequencing 

technologies and applications: A brief overview. Clinical and Translational Medicine, 

12(3). https://doi.org/10.1002/ctm2.694 

Kalainayakan, S. P., FitzGerald, K. E., Konduri, P. C., Vidal, C., & Zhang, L. (2018). Essential 

roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. 

Cell & Bioscience, 8(1). https://doi.org/10.1186/s13578-018-0257-8 

Meller, A., Ward, M., Borowsky, J., Kshirsagar, M., Lotthammer, J. M., Oviedo, F., Ferres, J. L., 

& Bowman, G. R. (2023). Predicting locations of cryptic pockets from single protein 

structures using the pocketminer graph neural network. Nature Communications, 14(1). 

https://doi.org/10.1038/s41467-023-36699-3 

Melo, C. M., Vidotto, T., Chaves, L. P., Lautert-Dutra, W., Reis, R. B. D., & Squire, J. A. 

(2021). The role of somatic mutations on the immune response of the tumor 

microenvironment in prostate cancer. International Journal of Molecular Sciences, 

22(17), 9550. https://doi.org/10.3390/ijms22179550 

Mithoowani, H., & Febbraro, M. (2022). Non-Small-Cell lung cancer in 2022: A review for 

general practitioners in oncology. Current Oncology, 29(3), 1828-1839. 

https://doi.org/10.3390/curroncol29030150 

Orr, J. C., & Hynds, R. E. (2021). Stem cell–derived respiratory epithelial cell cultures as human 

disease models. American Journal of Respiratory Cell and Molecular Biology, 64(6), 

657-668. https://doi.org/10.1165/rcmb.2020-0440tr 

Remark, R., Becker, C., Gomez, J. E., Damotte, D., Dieu-Nosjean, M.-C., Sautès-Fridman, C., 

Fridman, W.-H., Powell, C. A., Altorki, N. K., Merad, M., & Gnjatic, S. (2015). The 

non–small cell lung cancer immune contexture. A major determinant of tumor 



characteristics and patient outcome. American Journal of Respiratory and Critical Care 

Medicine, 191(4), 377-390. https://doi.org/10.1164/rccm.201409-1671pp 

Rodak, O., Peris-Díaz, M. D., Olbromski, M., Podhorska-Okołów, M., & Dzięgiel, P. (2021). 

Current landscape of non-small cell lung cancer: Epidemiology, histological 

classification, targeted therapies, and immunotherapy. Cancers, 13(18), 4705. 

https://doi.org/10.3390/cancers13184705 

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., Hao, Y., 

Stoeckius, M., Smibert, P., & Satija, R. (2019). Comprehensive integration of single-cell 

data. Cell, 177(7), 1888-1902.e21. https://doi.org/10.1016/j.cell.2019.05.031 

Tan, Z., Chen, X., Zuo, J., Fu, S., Wang, H., & Wang, J. (2023). Comprehensive analysis of 

scRNA-Seq and bulk rna-seq reveals dynamic changes in the tumor immune 

microenvironment of bladder cancer and establishes a prognostic model. Journal of 

Translational Medicine, 21(1). https://doi.org/10.1186/s12967-023-04056-z 

Wang, C., Yu, Q., Song, T., Wang, Z., Song, L., Yang, Y., Shao, J., Li, J., Ni, Y., Chao, N., 

Zhang, L., & Li, W. (2022). The heterogeneous immune landscape between lung 

adenocarcinoma and squamous carcinoma revealed by single-cell RNA sequencing. 

Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-

01130-8 

Zhang, Y., Wang, D., Peng, M., Tang, L., Ouyang, J., Xiong, F., Guo, C., Tang, Y., Zhou, Y., 

Liao, Q., Wu, X., Wang, H., Yu, J., Li, Y., Li, X., Li, G., Zeng, Z., Tan, Y., & Xiong, W. 

(2021). Single‐cell RNA sequencing in cancer research. Journal of Experimental & 

Clinical Cancer Research, 40(1). https://doi.org/10.1186/s13046-021-01874-1 

 


