Semi-Supervised Pulmonary Auscultation Analysis with Cross Pseudo Supervision

Jieruei Chang, Princeton High School

Motivation

Pulmonary Auscultation

- Listening to lung sounds with a stethoscope
- Crucial first step in respiratory disease diagnosis

The case for automation

- Reduce diagnostic errors
- Long-term patient monitoring

Problem Definition

- Labeling of respiratory sounds:
 - Inhalation / Exhalation
 - Continuous Adventitious Sounds (CAS): Wheeze, Rhonchi, Stridor
 - Discontinuous Adventitious Sounds (DAS): Crackles
- Multilabel segmentation problem: temporal position is important Challenges
- Limited dataset size; high intra-variation in lung sounds (difficulty in differentiation between different classes)

Cross Pseudo Supervision (CPS)

- Semi-supervised learning: Leverage both labeled and unlabeled data to address low-data situation
- Twin network setup: network outputs used for ٠ pseudo labels to supervise the other network

Loss Functions

Experiments

Quantitative Performance

- AUC over varying labeled/unlabeled partitions ٠
- Semi-supervised outperforms baseline on all partitions, and degrades much slower

Ablation Study

- BiGRU leverages strong temporal relationships (Inhalation/Exhalation cycle)
- Pre-training improves performance on classes with few examples (CAS, DAS)
- CPS leads to significant improvement across all categories

Component				AUC				F1			
CNN	BiGRU	Pretrain	CPS	Inhalation	Exhalation	DAS	CAS	Inhalation	Exhalation	DAS	CAS
\checkmark				89.48%	74.22%	79.30%	84.36%	70.23%	32.61%	35.30%	32.17
\checkmark	\checkmark			92.64%	79.10%	78.37%	86.49%	73.62%	38.57%	34.98%	34.08
\checkmark	\checkmark	\checkmark		92.44%	80.77%	83.79%	92.65%	73.43%	40.52%	44.19%	49.69
\checkmark	\checkmark	\checkmark	\checkmark	93.59%	83.99%	87.64%	93.88%	75.80%	45.76%	49.16%	53.57

Qualitative Performance

proposed model provides results much closer to ground truth, esp. on classes with fewer examples (DAS/CAS)

MSEF 2024

Approach

Single Network Architecture

Feature extractor pretrained on AudioSet **Bidirectional GRU to** capture long-range temporal dependencies, understand more nuanced variations in lung sounds

Binary Cross Entropy Loss between pseudo label and model predictions Weighted due to class imbalance Thresholding function as softmax/one-hot does not work due to multilabel classification problem

Conclusion

Contributions

- Demonstrated that semi-supervised techniques ٠ are a viable approach in pulmonary auscultation analysis
 - Applied CPS in audio domain and demonstrated that it outperforms purely supervised baseline models
 - Showed that pretraining on large-scale audio datasets can further improve performance in this task

Future Work

- Use labeled and unlabeled data from different • sources to more accurately reflect real world
- Create large-scale unlabeled datasets to further ٠ improve diagnostic accuracy and allow for noninvasive long-term patient monitoring