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Cross Pseudo Supervision (CPS) Single Network Architecture
* Semi-supervised learning: Leverage both labeled ¢ Feature extractor
and unlabeled data to address low-data situation pretrained on AudioSet

Pulmonary Auscultation
* Listening to lung sounds with a stethoscope
*  Crucial first step in respiratory disease
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* Labeling of respiratory sounds: - fow) o [ " Lz ™ Loss Functions
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Continuous Adventitious Sounds (CAS): Wheeze, Rhonchi, Stridor — R pseudo label and model predictions Mo |
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* Multilabel segmentation problem: temporal position is important L e T  Thresholding function as lhee (D, ) = _CLDZI,{;Z%_log(pch)
Challenges softmax/one-hot does not work due ) Tog (L — pe).
* Limited dataset size; high intra-variation in lung sounds (difficulty in [ to multilabel classification problem i o
differentiation between different classes)
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Quantitative Performance Ablation Study Contributions
* AUC over varying labeled/unlabeled partitions * BiGRU leverages strong temporal relationships (Inhalation/Exhalation cycle) * Demonstrated that semi-supervised techniques
* Semi-supervised outperforms baseline on all partitions, and * Pre-training improves performance on classes with few examples (CAS, DAS) are a viable approach in pulmonary auscultation
degrades much slower * CPS leads to significant improvement across all categories analysis
—— I * Applied CPS in audio domain and
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Component AUC F1 demonstrated that it outperforms purely
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